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Abstract. A salient characteristic of human perception of music is that
musical events are perceived as being grouped temporally into struc-
tural units such as phrases or motifs. Segmentation of musical sequences
into structural units is a topic of ongoing research, both in cognitive psy-
chology and music information retrieval. Computational models of music
segmentation are typically based either on explicit knowledge of music
theory or human perception, or on statistical and information-theoretic
properties of musical data. The former, rule-based approach has been
found to better account for (human annotated) segment boundaries in
music than probabilistic approaches [13], although the statistical model
proposed in [13] performs almost as well as state-of-the-art rule-based
approaches. In this paper, we propose a new probabilistic segmentation
method, based on Restricted Boltzmann Machines (RBM). By sampling,
we determine a probability distribution over a subset of visible units in
the model, conditioned on a configuration of the remaining visible units.
We apply this approach to an n-gram representation of melodies, where
the RBM generates the conditional probability of a note given its n-1
predecessors. We use this quantity in combination with a threshold to
determine the location of segment boundaries. A comparative evaluation
shows that this model slightly improves segmentation performance over
the model proposed in [13], and as such is closer to the state-of-the-art
rule-based models.

1 Introduction

Across perceptual domains, grouping and segmentation mechanisms are cru-
cial for our disambiguation and interpretation of the world. Both top-down,
schematic processing mechanisms and bottom-up, grouping mechanisms con-
tribute to our ability to break the world down into meaningful, coherent “chunks”.
Indeed, a salient characteristic of human perception of music is that musical se-
quences are not experienced as an indiscriminate stream of events, but rather
as a sequence of temporally contiguous musical groups or segments. Elements
within a group are perceived to have a coherence that leads to the perception of
these events as a structural unit (e.g., a musical phrase or motif).

The origin and nature of this sense of musical coherence, or lack thereof,
which gives rise to musical grouping and segmentation has been a topic of ongo-
ing research. A prominent approach from music theory and cognitive psychology



has been to apply perceptual grouping mechanisms, such as those suggested by
Gestalt psychology, to music perception. Gestalt principles, such as the laws of
proximity, similarity, and closure, were first discussed in visual perception [20],
and have been successfully applied to auditory scene analysis [2] and inspired
theories of music perception [11,12,10]. Narmours Implication-Realization theory
[12], for example, uses measures of pitch proximity and closure that offer insight
into how listeners perceive the boundaries between musical phrases. This type
of theory-driven approach has given rise to various rule-based computational
models of segmentation. This class of models relies upon the specification of one
or more principles according to which musical sequences are grouped.

A second class of computational methods is based on statistical and informa-
tion theoretic properties of musical data. Recent research in this area has used
the statistical structure of sequential tonal and temporal information to com-
pute measures of information (such as Information Content), which serve as a
proxy for expectedness (see for example, [1]). Measures of expectation may then
be used to calculate segmentation boundaries. For example, a highly expected
musical event followed by an unexpected event is often indicative of a perceptual
boundary.

A comparison of rule-based and probabilistic approaches [13] suggests the
most effective segmentation methods are generally theory-based approaches. The
statistical model proposed in [13] (IDyOM) is capable of much better segmenta-
tions than simpler statistical models based on digram transition probabilities and
point-wise mutual information [3], but still falls slightly short of state-of-the-art
rule-based models. Even if rule-based models currently outperform statistical
models, there is a motivation to further pursue statistical models of melodic
segmentation.

It is plausible that the rules put forth in music-theoretic and perception-
based models have been induced by regularities in musical and auditory stimuli.
Models that learn directly from the statistics of such stimuli are conceptually
simpler than models that describe the perceptual mechanisms of human beings
that have internalized the regularities of those stimuli.

In this paper, we introduce a new probabilistic segmentation method, based
on a class of stochastic neural networks known as Restricted Boltzmann Ma-
chines (RBMs). We present a Monte-Carlo method to determine a probability
distribution over a subset of visible units in the model, conditioned on a con-
figuration of the remaining visible units. Processing melodies as n-grams, the
RBM generates the conditional probability of a note given its n-1 predecessors.
This quantity, in combination with a threshold, determines the location of seg-
ment boundaries. In Section 2 we give a brief overview of both rule-based and
statistical models for melodic segmentation, where we restrict ourselves to an
overview of the models with which we compare our approach: those evaluated in
[13]. Then, we will argue that our model (explained in Section 3) has advantages
over statistical models based on n-gram counting. In addition to this qualita-
tive comparison of our method to other approaches (Section 3), we reproduce a
quantitative evaluation experiment by Pearce et al. [13] (Section 4). The results,



as reported and discussed in Section 5, show that our model slightly improves
segmentation performance over IDyOM, and as such is closer to the state-of-the-
art rule-based models. Finally, we present conclusions and directions for future
work in Section 6.

2 Related Work

2.1 Rule based segmentation

One of the first models of melodic segmentation based on Gestalt rules was pro-
posed by Tenney and Polansky in [17]. This theory quantifies rules of local detail
to predict grouping judgements. However, this theory does not account for vague
or ambiguous grouping judgements, and the selection of their numerical weights
is rather arbitrary [17,10]. One of the most popular music theoretic approaches
is Lerdahl and Jackendoff’s Generative Theory of Tonal Music (GTTM) [10].
This theory pursues the formal description of musical intuitions of experienced
listeners through a combination of cognitive principles and generative linguistic
theory. In GTTM, the hierarchical segmentation of a musical piece into motifs,
phrases and sections is represented through a grouping structure. This structure
is expressed through consecutively numbered grouping preference rules (GPRs),
which model possible structural descriptions that correspond to experienced lis-
teners’ hearing of a particular piece [10]. According to GTTM, two types of
evidence are involved in the determination of the grouping structure. The first
kind of evidence to perceive a phrase boundary between two melodic events is
local detail, i.e. relative temporal proximity like slurs and rests (GPR 2a), inter-
onset-interval (IOI) (GPR 2b) and change in register (GPR 3a), dynamics (GPR
3b), articulation (GPR 3c) or duration (GPR 3d).

The organization of larger-level grouping involves intensification of the effects
picked out by GPRs 2 and 3 on a larger temporal scale (GPR 4), symmetry
(GPR 5) and parallelism (GPR 6). While Lerdahl and Jackendoff’s work did
not attempt to quantify these rules, a computational model for identification
of segment boundaries that numerically quantifies the GPRs 2a, 2b, 3a and 3d
was proposed by Frankland and Cohen [5]. This model encodes melodic profiles
using absolute duration of the notes, and MIDI note numbers for representing
absolute pitch.

A related model to the quantification of the GPRs was proposed by Cam-
bouropoulos [4]. The Local Boundary Detection Model (LBDM) consists of a
change rule and a proximity rule, operated over melodic profiles that encode
pitch, IOI and rests. On the one hand, the change rule identifies the strength
of a segment boundary in relation to the degree of change between consecutive
intervals (similar to GPR 3). On the other hand, the proximity rule considers
the size of the intervals involved (as in GPR 2). The total boundary strength
is then computed as a weighted sum of the boundaries for pitch, IOI and rests,
where the weights were empirically selected.

Temperley [16] introduced a similar method, called Grouper, that partitions
a melody (represented by onset time, off time, chromatic pitch and a level in a



metrical hierarchy) into non-overlapping groups. Grouper uses three phase struc-
ture preference rules (PSPR) to asses the existence of segment boundaries. PSPR
1 locates boundaries at large IOIs and large offset-to-onset intervals (OOIs), and
is similar to GPR 2, while PSPR 3 is a rule for metrical parallelism, analogous
to GPR 6. PSPR 2 relates to the length of the phrase, and was empirically
determined by Temperley using the Essen Folk Song Collection (EFSC), and
therefore, may not be a general rule [14].

2.2 Statistical and information theoretic segmentation

In [14], Pearce, Müllensiefen and Wiggins applied two information theoretic ap-
proaches, originally designed by Brent [3] for word identification in unsegmented
speech, to construct boundary strength profiles (BSPs) for melodic events. This
method relies on the assumption that segmentation boundaries are located in
places where certain information theoretic measures have a higher numerical
value than in the immediately neighbouring locations. The first approach con-
structs BSPs using transition probability (TP), the conditional probability of an
element of a sequence given the preceding element, while the second method re-
lies on pointwise mutual information (PMI), that measures to which degree the
occurrence of an event reduces the model’s uncertainty about the co-occurrence
of another event, to produce such BSPs

Inspired by developments in musicology, computational linguistics and ma-
chine learning, Pearce, Müllensiefen and Wiggins offered the IDyOM model.
IDyOM is an unsupervised, multi-layer, variable-order Markov model that com-
putes the conditional probability and Information Content (IC) of a musical
event, given the prior context. An overview of IDyOM can be found in [13].

3 Method

The primary assumption underlying statistical models of melodic segmentation
is that the perception of segment boundaries is induced by the statistical prop-
erties of the data. RBMs (Section 3.2) can be trained effectively as a generative
probabilistic model of data (Section 3.5), and are therefore a good basis for
defining a segmentation method. However, in contrast to sequential models such
as recurrent neural networks, RBMs are models of static data, and do not model
temporal dependencies. A common way to deal with this is to feed the model
sub-sequences of consecutive events (n-grams) as if they were static entities,
without explicitly encoding time. This n-gram approach allows the model to
capture regularities among events that take place within an n-gram. With some
simplification we can state that these regularities take the form of a joint prob-
ability distribution over all events in an n-gram. With Monte-Carlo methods,
we can use this joint distribution to approximate the conditional probability of
some of these events, given others. This procedure is explained in Sections 3.3
and 3.4.



3.1 Relation to other statistical models

Although our RBM-based method works with n-gram representations just as the
statistical methods discussed in Section 2.2, the approaches are fundamentally
different. Models such as IDyOM, TP and PMI are based on n-gram counting,
and as such has to deal with the trade-off between longer n-grams and sparsity
of data that is inevitable when working with longer sub-sequences. In IDyOM,
this problem is countered with “back-off” a heuristic to dynamically decrease or
increase the n-gram size as the sparsity of the data allows. In contrast, an RBM
does not assign probabilities to n-grams based directly on their frequency counts.
The non-linear connections between visible units (via a layer of hidden units)
allow a much smoother probability distribution, that can also assign non-zero
probability to n-grams that were never presented as training data. As a result,
it is possible to work with a fixed, relatively large n-gram size, without the need
to reduce the size in order to counter data sparsity.

Every computational model requires a set of basic features that describe
musical events. In IDyOM, these basic features are treated as statistically inde-
pendent, and dependencies between features are modelled explicitly by defining
combined viewpoints as cross-products of subsets of features. An advantage of
the RBM model is that dependencies between features are modelled as an inte-
gral part of learning, without the need to specify subsets of features explicitly.

Finally, the statistical methods discussed in Section 2 are fundamentally n-
gram based, and it is not obvious how these methods can be adapted to work with
polyphonic music rather than monophonic melodies. Although the RBM model
presented here uses an n-gram representation, it is straight-forward to adopt the
same segmentation approach using a different representation of musical events,
such as the note-centred representation proposed in [7]. This would make the
RBM suitable for segmenting polyphonic music.

3.2 Restricted Boltzmann Machines

An RBM is a stochastic Neural Network with two layers, a visible layer with
units v ∈ {0, 1}r and a hidden layer with units h ∈ {0, 1}q [9]. The units of
both layers are fully interconnected with weights W ∈ Rr×q, while there are no
connections between the units within a layer.

In a trained RBM, the marginal probability distribution of a visible config-
uration v is given by the equation

p(v) =
1

Z

∑
h

e−E(v,h), (1)

where E(v,h) is an energy function. The computation of this probability distri-
bution is usually intractable, because it requires summing over all possible joint
configurations of v and h as

Z =
∑
v,h

e−E(v,h). (2)



3.3 Approximation of the probability of v

Another way to compute the probability of a visible unit configuration v is to
approximate it through Monte Carlo techniques. To that end, for N randomly
initialized fantasy particles1 Q, we execute Gibbs sampling until thermal equi-
librium. In the visible activation vector qi of a fantasy particle i, element qij
specifies the probability that visible unit j is on. Since all visible units are in-
dependent given h, the probability of v based on one fantasy particle’s visible
activation is computed as:

p(v|qi) =
∏
j

p(vj |qij). (3)

As we are using binary units, such an estimate can be calculated by using
a binomial distribution with one trial per unit. We average the results over
N fantasy particles, leading to an increasingly close approximation of the true
probability of v as N increases:

p(v|Q) =
1

N

N∑
i

∏
j

(
1

vj

)
q
vj
ij (1− qij)

1−vj . (4)

3.4 Posterior probabilities of visible units

When the visible layer consists of many units, N will need to be very large to
obtain good probability estimates with the method described above. However, for
conditioning a (relatively small) subset of visible units vy ⊂ v on the remaining
visible units vx = v \ vy, the above method is very useful. This can be done
by Gibbs sampling after randomly initializing the units vy while clamping all
other units vx according to their initial state in v. In Eq. 4, all vx contribute a
probability of 1, which results in the conditional probability of vy given vx.

We use this approach to condition the units belonging to the last time step of
an n-gram on the units belonging to preceding time steps. For the experiments
reported in this paper, we found that it is sufficient to use 150 fantasy particles
and for each to perform 150 Gibbs sampling steps.

3.5 Training

We train a single RBM using persistent contrastive divergence (PCD) [18] with
fast weights [19], a variation of the standard contrastive divergence (CD) algo-
rithm [8]. PCD is more suitable for sampling than CD, because it results in a
better approximation of the likelihood gradient.

Based on properties of neural coding, sparsity and selectivity can be used as
constraints for the optimization of the training algorithm [6]. Sparsity encour-
ages competition between hidden units, and selectivity prevents over-dominance

1 See [18]
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Fig. 1. Seven examples of n-gram training instances (n=10) used as input to the RBM.
Within each instance (delimited by a dark gray border), each of the 10 columns rep-
resents a note. Each column consists of four one-hot encoded viewpoints: |interval |,
contour, IOI and OOI (indicated by the braces on the left). The viewpoints are sepa-
rated by horizontal light gray lines for clarity. The first instance shows an example of
noise padding (in the first six columns) to indicate the beginning of a melody.

by any individual unit. A parameter µ specifies the desired degree of sparsity
and selectivity, whereas another parameter ϕ determines how strongly the spar-
sity/selectivity constraints are enforced.

3.6 Data Representation

From the monophonic melodies, we construct a set of n-grams by using a sliding
window of size n and a step size of 1. For each note in the n-gram, four basic
features are computed: 1) absolute values of the pitch interval between the note
and its predecessor (in semitones); 2) the contour (up, down, or equal); 3) inter-
onset-interval (IOI); and 4) onset-to-offset-interval (OOI). The IOI and OOI
values are quantized into semiquaver and quaver, respectively. Each of these
four features is represented as a binary vector and its respective value for any
note is encoded in a one-hot representation. The first n-1 n-grams in a melody are
noise-padded to account for the first n-1 prefixes of the melody. Some examples
of binary representations of n-grams are given in Figure 1).

3.7 Information Content

After training the model as described in 3.5, we estimate the probability of the
last note conditioned on its preceding notes for each n-gram as introduced in
3.4. From the probabilities p(et | et−1

t−n+1) computed thus, we calculate the IC as:

h(et | et−1
t−n+1) = log2

1

p(et | et−1
t−n+1)

, (5)
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Fig. 2. A BSP calculated from 11-grams. The upper figure shows the notes of 9 mea-
sures (36 beats) of a German folk song. The lower figure shows a BSP (i.e. IC) used
for segmentation. The correct segmentation (ground truth) is depicted as vertical grey
bars at the top of the figures, segment boundaries found by our model are shown as
dashed vertical lines. Note that the BSP has particularly high peaks at rests and at
high intervals. However, the segment boundary found at beat 28 does not have any of
those cues and was still correctly classified.

where et is a note event at time step t, and elk is a note sequence from position
k to l of a melody. IC is a measure of the unexpectedness of an event given its
context. According to a hypothesis of [13], segmentation in auditory perception
is determined by perceptual expectations for auditory events. In this sense, the
IC relates directly to this perceived boundary strength, thus we call the IC over
a note sequence boundary strength profile.

3.8 Peak Picking

Based on the BSP described in the previous section, we need to find a concrete
binary segmentation vector. For that, we use the peak picking method described
in [13]. This method finds all peaks in the profile and keeps those which are k
times the standard deviation greater than the mean boundary strength, linearly
weighted from the beginning of the melody to the preceding value:

Sn > k

√∑n−1
i=1 (wiSi − S̄w,1...n−1)2∑n−1

1 wi

+

∑n−1
i=1 wiSi∑n−1
1 wi

, (6)



where Sm is the m-th value of the BSP, and wi are the weights which emphasize
recent values over those of the beginning of the song (triangular window), and
k has to be found empirically.

4 Experiment

4.1 Training Data

In this work, we use the EFSC [15]. This database is a widely used corpus in
MIR for experiments on symbolic music. This collection consists of more than
6000 transcriptions of folk songs primarily from Germany and other European
regions. The EFSC collection is commonly used for testing computational models
of music segmentation, due to the fact that it is annotated with phrase markers.

In accordance with [13], we used the Erk subset of the EFSC, which con-
sists of 1705 German folk melodies with a total of 78, 995 note events. Phrase
boundary annotations are marked at about 12% of the note events.

4.2 Procedure

The model is trained and tested on the data described in Section 4.1, with n-
gram lengths varying between 1 and 11. For each n-gram length, we perform
5-fold cross-validation and average the results over all folds. Similar to the ap-
proach in [13], after computing the BSPs, we evaluate different k from the set
{0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00} and choose the value that maximizes F1
for the respective n-gram length. To make results comparable to those reported
in [13], the output of the model is appended with an implicit (and correct) phrase
boundary at the end of each melody.

Since the hyper-parameters of the model are inter-dependent, it is infeasible
to exhaustively search for the optimal parameter setting. For the current exper-
iment, we have manually chosen a set of hyper-parameters that give reasonable
results for the different models tested: 200 hidden units, a batch size of 100, a
momentum of 0.6, and a learning rate of 0.007 which we linearly decrease to zero
during training. The fast weights used in the training algorithm (see Section 3.5)
help the fantasy particles mix well, even with small learning rates. The learning
rate of the fast weights is increased from 0.002 to 0.007 during training. The
training is continued until convergence of the parameters (typically between 100
and 300 epochs). The sparsity parameters (see Section 3.5) are set to µ = 0.04,
and ϕ = 0.65, respectively. In addition, we use a value of 0.0035 for L2 weight
regularization, which penalizes large weight coefficients.

5 Results and Discussion

We tested three different representations for pitch, yielding the following F1
scores for 10-grams: absolute pitch (0.582), interval (0.600), and the absolute
value of interval (i.e. |interval |) plus contour (0.602). The latter representation



Fig. 3. Maximal F1 scores for different n-gram lengths.

was chosen for our experiments, as it showed the best performance. Not sur-
prisingly, relative pitch representations lead to better results, as they reduce the
number of combination possibilities in the input. Event though the difference in
F1 score between interval and |interval | plus contour representation is not signif-
icant, it still shows that it is valid to decompose viewpoints into their elementary
informative parts. Such an approach, next to reducing the input dimensionality,
may also support the generalization ability of a model (e.g. |interval| represen-
tation in music may help to understand the concept of inversion).

Figure 3 shows the F1 score obtained by models of different n-gram sizes.
The fact that boundary detection is reasonably good even for 1-grams is likely
due to the fact that the 1-gram includes the OOI, which is mostly zero, except
for the relatively rare occurrence of a rest between notes. Because of this, the
probability values assigned to OOI values by a trained RBM behave like an
inverted rest indicator: high for OOI = 0, and low for OOI > 0. This makes the
behaviour of the 1-gram RBM much like that of the GPR 2a rule (Section 2.1).
That GPR 2a performs slightly better (see Table 1) can be explained by the
fact that the RBM also detects segment boundaries at large (and unlikely) pitch
intervals, which are not always correct.

Another remarkable result is that 1-grams perform better than 2-grams (see
Figure 3). Although we have no definite explanation for this yet, the difference
may be related to the fact that in the 1-gram model, the probability is esti-
mated by sampling without clamping any units. In contrast, for 2-grams half
the units get clamped during sampling. Prior tests with our method for com-
puting the conditional probability (Section 3.4) have revealed (unsurprisingly)
that the quality of the approximation decreases with the ratio of unknown units
over given (clamped) units. This phenomenon may also partly account for the
steady increase of F1 scores for increasing n-grams sizes larger than one. Nev-
ertheless, the increasing performance with increasing n-gram size demonstrates
that the RBM based segmentation method is less susceptible to problems of data
sparseness encountered in n-gram counting approaches.



Model Precision Recall F1

Grouper 0.71 0.62 0.66
LBDM 0.70 0.60 0.63
RBM (10-gram) 0.83 0.50 0.60
IDyOM 0.76 0.50 0.58
GPR 2a 0.99 0.45 0.58

GPR 2b 0.47 0.42 0.39
GPR 3a 0.29 0.46 0.35
GPR 3d 0.66 0.22 0.31
PMI 0.16 0.32 0.21
TP 0.17 0.19 0.17

Always 0.13 1.00 0.22
Never 0.00 0.00 0.00

Table 1. Results of the model comparison, ordered by F1 score. Table adapted from
[13], with permission.

6 Conclusion

In this paper, an RBM-based unsupervised probabilistic method for segmenta-
tion of melodic sequences was presented. In contrast to other statistical methods,
our method does not rely on frequency counting, and thereby circumvents prob-
lems related to data sparsity. The method performs slightly better than IDyOM,
a sophisticated frequency counting model.

The segment boundary detection capabilities of our model are still slightly
lower than state-of-the-art rule based methods that rely on gestalt principles
formulated for musical stimuli. This result underlines the remaining challenge to
find segmentation models that correspond to human perception, based only on
musical stimuli in combination with universal learning principles.

An important aspect of human perception that is missing in our current
method is equivalent of short-term memory, to bias long-term expectations based
on the stimuli in the direct past (see [13]). Furthermore, we wish to investigate
the effect of different architectural factors on the segmentation behaviour of
the model, like an increased number of hidden layers, or an increased number
of hidden units per hidden layer. Lastly, the formation of boundary strength
profiles may be improved by involving other information theoretic quantities,
such as the entropy of conditional probability distributions.
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