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Abstract

A basic function of cognition is to detect regularities in sensory input to facilitate the prediction and

recognition of future events. It has been proposed that these implicit expectations arise from an internal

predictive coding model, based on knowledge acquired through processes such as statistical learning, but

it is unclear how different types of statistical information affect listeners’ memory for auditory stimuli. We

used a combination of behavioral and computational methods to investigate memory for non-linguistic

auditory sequences. Participants repeatedly heard tone sequences varying systematically in their informa-

tion-theoretic properties. Expectedness ratings of tones were collected during three listening sessions, and

a recognition memory test was given after each session. Information-theoretic measures of sequential pre-

dictability significantly influenced listeners’ expectedness ratings, and variations in these properties had a

significant impact on memory performance. Predictable sequences yielded increasingly better memory

performance with increasing exposure. Computational simulations using a probabilistic model of auditory

expectation suggest that listeners dynamically formed a new, and increasingly accurate, implicit cognitive

model of the information-theoretic structure of the sequences throughout the experimental session.

Keywords: Expectation; Recognition memory; Predictive coding; Information theory;

Computational modeling; Auditory perception; Music cognition

1. Introduction

Effective perceptual systems must learn and remember regularities in sensory input, so

as to generate accurate expectations for future events. Expectation and prediction are
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thought to be important mechanisms in many areas of cognition, including language pro-

cessing (Cristi�a, McGuire, Seidl, & Francis, 2011; DeLong, Urbach, & Kutas, 2005; Hale,

2006; Levy, 2008; Saffran, 2003a,b), visual perception (Bar, 2007; Bubic, Von Cramon,

& Schubotz, 2010; Egner, Monti, & Summerfield, 2010), music perception (Huron, 2006;

Meyer, 1956; Pearce, 2005; Pearce & Wiggins, 2012), and motor sequencing (Wolpert &

Flanagan, 2001). Recent accounts of the role of prediction in cognitive and neural pro-

cessing of sensory information suggest that expectations about future events come from

the experience and prediction of past events. In particular, from the perspective of hierar-

chical predictive coding (Clark, 2013; Friston, 2010; Friston & Kiebel, 2009), an internal

model of the sensory environment compares top-down predictions about the future with

the actual events that transpire, and error signals generated from the comparison drive

learning to improve future predictions. These prediction errors occur at a series of hierar-

chical levels, each reflecting an integration of information over successively longer time

scales. The idea that top-down predictions play a central role in constructing coherent

representations of incoming sensory input has a venerable history (Barlow, 1959; Dayan,

Hinton, Neal, & Zemel, 1995; Gregory, 1980; Helmholtz, 1866). However, recent years

have seen a resurgence of interest in cognitive mechanisms of statistical and probabilistic

learning that are thought to underlie the generation of expectations in these accounts. In

the auditory modality, these expectations relate especially to information contained in

structured pitch sequences, and evidence supports hierarchical predictive coding of pitch

perception for such sequences (Furl et al., 2011; Kumar et al., 2011).

1.1. Statistical learning and predictive processing of sequential structure

Perceptual surprise resulting from a mismatch between sensory information and top-

down predictions can be minimized by updating those predictions through dynamic statis-

tical learning to more accurately reflect the sequential structure of the sensory signal.

Statistical learning has been studied primarily by assessing the ability to segment

isochronous sequences (i.e., sequences with no variation in duration or time interval

between the onset of consecutive events) following exposure to stimuli with known statis-

tical structure. Saffran, Newport, and Aslin (1996) found that after several minutes of

exposure to artificially constructed isochronous syllable sequences, adults are able to

accurately segment three-syllable “words” distinguished only by having lower syllable

transition probabilities between compared to within the words. Following exposure, par-

ticipants are presented with pairs consisting of a valid word (where the three syllables

occur between word boundaries) and a non-word (where a word boundary occurs within

the three syllables) and asked to identify the one that is most familiar. Performance is

typically above chance, demonstrating that participants were able to accurately segment

the syllable streams using the underlying statistics defining word boundaries.

Subsequent research found that 8-month-old infants also perform above chance on this

task (Saffran, Aslin, & Newport, 1996). Subsequent work using this paradigm has demon-

strated sensitivity to statistical properties of tone sequences (Saffran, Johnson, Aslin, &

Newport, 1999), and pitch interval sequences (Saffran & Griepentrog, 2001; Saffran,
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Reeck, Niebuhr, & Wilson, 2005). Research on the influence of statistical and implicit

learning on language acquisition has tended to focus on segmentation and chunking of

language at different levels of hierarchical organization (Mirman, Magnuson, Graf Estes,

& Dixon, 2010; Perruchet & Pacton, 2006; Romberg & Saffran, 2010) and acquisition of

syntactic categories (Redington, Chater, & Finch, 1998).

These results demonstrate an ability to learn the statistical structure of unfamiliar stim-

uli. In the present research, we focus on understanding the basic cognitive processes of

expectation and memory and how they are influenced by statistical learning. Expectation

has been extensively studied in research on music perception, which suggests that listen-

ers implicitly acquire knowledge about the statistical structure of music and that this

knowledge guides their perception of subsequent music (Huron, 2006; Krumhansl, 1990;

Pearce & Wiggins, 2006; Rohrmeier & Rebuschat, 2012; Tillmann, 2012). Furthermore,

there is evidence that expectations are influenced in this way both through long-term

exposure to music (Krumhansl, 1990), and through learning the properties of the local

context (Oram & Cuddy, 1995; Tillmann, Bigand, & Pineau, 1998; Tillmann, Bharucha,

& Bigand, 2000). This learning has been conceptualized as the acquisition of an internal

representation of the statistical properties of the musical sequences to which listeners are

exposed over a range of temporal scales (Krumhansl, 1990; Krumhansl & Kessler, 1982;

Temperley, 2007). This process of statistical learning allows listeners to generate proba-

bilistic predictions about forthcoming musical events, dependent on the prior musical

context and previously acquired schematic expectations for the musical style in question

(Krumhansl, Louhivuori, Toiviainen, J€arvinen, & Eerola, 1999; Pearce, Ruiz, Kapasi,

Wiggins, & Bhattacharya, 2010; Pearce & Wiggins, 2006). Research to date has not

examined how statistical properties influence expectations and recognition memory over

periods of increasing exposure to stylistically unfamiliar auditory tone sequences.

1.2. Information-theoretic accounts of auditory processing

Most research on statistical learning assumes that listeners acquire simple cognitive

models of statistical structure, corresponding to first-order Markov transition tables. This

leaves open the questions of exactly how these models are acquired and how they are

used to estimate the predictability of entire sequences and events within them. Informa-

tion theory provides a way of describing and quantifying, in precise terms, the informa-

tion contained in a signal. This is especially useful for clarifying how cognitive systems

process and learn temporal sensory signals; and, indeed, information-theoretic measures

such as information content, a measure of surprisal, and entropy, a measure of uncer-

tainty, have been used to simulate successfully anticipation of forthcoming sensory input,

such as music and language (e.g., Abdallah & Plumbley, 2009; Brent, 1999; Elman,

1990; Hale, 2006; Hansen & Pearce, 2014; Levy, 2008; Manning & Sch€utze, 1999;

Pearce, 2005).

There is a long history of interest in information theoretic models of non-linguistic

auditory sequences (e.g., Ames, 1989; Cohen, 1962; Knopoff & Hutchinson, 1981, 1983;

Moles, 1966; Youngblood, 1958), but many approaches suffered from using simple
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predictive models, small datasets, and inflexible representations (see reviews by Cohen,

1962; and Ames, 1989). Furthermore, they focused on computing and comparing the

information-theoretic properties of entire corpora, rather than building dynamic predictive

models that learn incrementally through exposure (Cohen, 1962; Pearce & Wiggins,

2012). In recent years, sophisticated, dynamic probabilistic models such as information

dynamics of music (IDyOM; Pearce, 2005; see also Section 3.1) have successfully

derived information-theoretic properties of auditory sequences that accurately account for

listeners’ expectations in many listening tasks (Egermann, Pearce, Wiggins, & McAdams,

2013; Hansen & Pearce, 2014; Omigie, Pearce, & Stewart, 2012; Omigie, Pearce, Wil-

liamson, & Stewart, 2013; Pearce, 2005; Pearce, M€ullensiefen, & Wiggins, 2010; Pearce,

Ruiz, et al., 2010). Recent research has also developed more sophisticated information-

theoretic measures that systematically distinguish different ways in which a stimulus can

be unpredictable (Abdallah & Plumbley, 2009, 2010, 2012).

Research to date has not applied these recently developed models and information-

theoretic measures to learning and memory for stylistically unfamiliar auditory stimuli

over periods of increasing exposure.

1.3. Memory in the cognitive processing of auditory sequences

Statistical learning of sequential structure in auditory perception requires that listeners

form in memory some record of the frequency with which different auditory events

appear in different sequential contexts. Much attention has focused on elucidating the

relationship between complexity and memory, and comparing the extraction of rules com-

pared with learning particular exemplars from sets of auditory stimuli. In music, for

example, research has shown that recognition memory for melodies can be influenced by

the complexity of motifs (brief, recurring passages of music that hold thematic meaning)

and melodic distinctiveness (M€ullensiefen & Halpern, 2014), familiarity (e.g., presenting

a well-known tune) (Bartlett, Halpern, & Dowling, 1995), and listener traits (e.g., age

and experience) (Dowling, Bartlett, Halpern, & Andrews, 2008). Predominantly, unfamil-

iar and more complex stimuli often yield poor explicit recognition memory (Halpern &

Bartlett, 2010), suggesting a relationship between predictability and recognition memory.

Research on implicit sequence learning has also explicitly connected the statistical

structure of stimuli with recognition of particular stimuli. For example, evidence suggests

that the repetition of a small number of stimulus exemplars may lead to satisfactory

recognition of those exemplars but unsuccessful internalization of the statistical rules

(indicated by generalization to new exemplars), while repetition of a larger number of

exemplars can lead to better generalization but worse recognition performance (Cleere-

mans, Destrebecqz, & Boyer, 1998; Loui & Wessel, 2008). In other words, the statistical

structure of auditory sequences may be extracted while the particular exemplars them-

selves are not retained. While these findings clarify the interplay between repetition and

learning, research to date has not examined the information-theoretic properties of the

stimulus in great detail, or how these properties influence statistical learning and memory

over periods of increasing exposure.
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1.4. The present research

In the present research, we investigate how expectation and recognition memory

change with repeated exposure to stylistically unfamiliar auditory tone sequences that

vary systematically in predictability (defined in precise, information-theoretic terms). We

use carefully controlled, artificially constructed, non-linguistic auditory stimuli so as to

focus specifically on the effects of information-theoretic properties of stimulus structure

on expectation and memory in domain-general sequence processing (without interference

from explicit referential semantics, for example, associated with linguistic stimuli). Proba-

bilistic models are subsequently employed to simulate the cognitive process of online sta-

tistical learning. Clark (2013, p. 8) has argued that “the nervous system is fundamentally

adapted to deal with uncertainty, noise, and ambiguity, and that it requires some (perhaps

several) concrete means of internally representing uncertainty.” Using carefully con-

structed tone sequences, we examine different information-theoretic representations of

stimulus uncertainty and unpredictability. Through behavioral testing and computational

simulation using these sequences, the present research aims to elucidate the underlying

cognitive probabilistic models that listeners develop through statistical learning, and how

these models have an impact on the expectedness of individual tones, as well as memory

for particular tone sequences, over a period of increasing exposure.

In this paper, for clarity of expression, we use expectation and expectedness to refer to

human cognitive processes and prediction and predictability to refer to computational

simulations. Expectation and prediction refer to the general process of anticipating future

events. Expectedness and unexpectedness refer to the subjective likelihood (or surprisal)

of a particular perceived event for a listener. Predictability and unpredictability refer to

the likelihood of an event or, more often, a sequence of events according to a computa-

tional model (the only exception arising during discussions of predictive coding, which

has been applied both to computational models and human cognitive processes).

2. Behavioral study

This study uses a generative probabilistic model to create a set of tone sequences vary-

ing systematically across three information-theoretic measures. Varying the sequences’

statistical structure allows us to assess which properties have the greatest impact on lis-

teners’ auditory expectations and memory for tone sequences. We focus on testing the

relative influence of three factors based on the information-theoretic concepts of Entropy
Rate, Multi-Information Rate,1 and Predictive Information Rate (see Abdallah & Plumb-

ley, 2009, 2010, 2012). These measures, discussed in detail below, are defined for random

processes with a known probability distribution.

Listeners cannot know the probability distribution used by the generative model a

priori, but they can estimate it by listening to tone sequences generated from the distribu-

tion. Therefore, rather than using the generative model to derive information-theoretic

properties of the generated stimulus sequences, we use a corresponding analytical model,
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which assumes that notes are sampled from a Markov process with an unknown transition

matrix, and estimates the transition matrix from the observed tones within each sequence.

The analytical model therefore processes each stimulus sequence in a sequential event-

by-event manner, dynamically updating its estimated probability model as it does so.

Both the generative and analytical models are first-order n-gram models supplied

with the same initial Bayesian prior consisting of a transition matrix derived from a

large corpus of Western tonal melodies in a Major key (see Section 2.2.2). This ensures

that the analytical model never encounters a previously unseen tone (thus avoiding the

zero-frequency problem; see Section 3.1). Although the prior was intended to lend the

stimulus sequences some familiar tonal musical structure, the tone distributions across

stimuli did not correlate with tone profiles derived from the experiments of Krumhansl

and Kessler (1982; see also Krumhansl, 1990), well-known measures of tonal structure

(see Section 2.2.2). Further, the computational simulations of listeners’ expectation and

memory performance were not improved by adding Western music training to the

model, suggesting that listeners did not process the stimuli as familiar, tonal melodies

(see the Appendix A). Therefore, in the remainder of the paper, we treat the stimuli as

non-musical.

The analytical model yields the three pointwise information measures examined in the

present research, Information Content, Coding Gain, and Predictive Information, which
are defined for particular events in particular sequences. They correspond to the static

information rates used to generate the sequences. We now describe the measures in detail

(see also Table 1).

• Information Content, corresponding to Entropy Rate, is a measure of the unexpect-

edness of an event in a sequence given the previous event. At any integer time t,
let xt be the note occurring at that time, and Өt be the estimated transition matrix

using information available at the previous timestep t � 1. The model, Өt, gener-

ates a conditional probability distribution governing the identity of xt, given xt�1:p
(xt|xt�1, Өt). The Information Content at time t is the negative log probability of xt
given the context and the estimated model: �log p(xt|xt�1, Өt). Entropy is the

Information Content averaged over all possible observations at a given point in the

sequence, while the Entropy Rate of the random process (see above) is the entropy

averaged over all possible contexts (Abdallah & Plumbley, 2009).

Table 1

Relationship between information-theoretic measures: Pointwise measures reflect a single event in a sequence,

obtained by taking the double integral of the corresponding distribution measure, while sequence measures

reflect the average of the corresponding pointwise measure across all events in a sequence

Distribution Measures Pointwise Measures Sequence Measures

Entropy Rate Information Content Sequence Information Content

Multi-Information Rate Coding Gain Sequence Coding Gain

Predictive Information Rate Predictive Information Sequence Predictive Information
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• Coding Gain, corresponding to Multi-Information Rate, measures how different the

information content of the current event would be if the model didn’t know the

identity of the previous event (in other words, how much information about the

current event the model gains from the previous event). Coding Gain at time t
quantifies how much the model’s ability to predict the current observation depends

on having observed the preceding observations and is a difference of log probabili-

ties: log p(xt|xt�1, Өt) � log p(xt|Өt), where the latter term is derived from the sta-

tionary distribution of the transition matrix. The Multi-Information Rate is the

Coding Gain averaged over all possible observations (xt) and contexts (xt�1). This

is equivalent to the mutual information (Mackay, 2003) between xt and xt�1 com-

puted from their joint distribution, p(xt, xt�1|Өt) (Abdallah & Plumbley, 2009).

• Predictive Information, corresponding to Predictive Information Rate, quantifies

how much the current event improves precision in predicting the next event. Pre-

dictive Information is quantified as the Kullback–Liebler divergence (Mackay,

2003) between two probability distributions: DKL(p(xt+1|xt,Өt+1)||p(xt+1|xt�1,Өt)),

representing the observer’s probabilistic beliefs about xt+1 before and after the

observation of xt. Predictive Information Rate2 is the Predictive Information aver-

aged over all possible observations (xt) and contexts (xt�1), which is equivalent to

a conditional mutual information (Mackay 2003) between xt and xt+1 given xt�1

according to their joint (trivariate) distribution, p(xt, xt+1, xt�1).

We use Entropy Rate, Multi-Information Rate, and Predictive Information Rate from

the generative model to select distributions to create the stimulus sequences. We then use

Information Content, Coding Gain, and Predictive Information from the analytical model

to measure the information-theoretic properties of individual events in the stimulus

sequences, and then average across every event in a sequence to compute sequence mea-
sures, representing the overall predictability of entire sequences.

To investigate the processes underlying auditory expectation and memory, listeners

were exposed to isochronous tone sequences produced by the generative model over

three listening sessions. In each listening session, participants heard sequences and rated

the expectedness of a tone (termed the probe tone) within each sequence. Probe tones

varied in terms of information content (representing unexpectedness) across sequences.

We focus on the Information Content of the probe tone because it is a straightforward

measure of unexpectedness that accounts well for listeners’ expectations (e.g., Hansen

& Pearce, 2014; Pearce, M€ullensiefen, et al., 2010; Pearce, Ruiz, et al., 2010). A recog-

nition memory test containing old and new sequences followed each listening session.

The timing of tones was not experimentally manipulated, as we sought to constrain

expectation and memory mechanisms to pitch relationships between tones, controlling

for potential confounding effects of temporal structure. This experimental design

enabled us to compute information-theoretic measures for every tone sequence and to

compare the effect of these information-theoretic properties on probe tone expectedness

ratings in the listening sessions as well as recognition memory performance in the test

sessions.
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2.1. Hypotheses

We propose specific hypotheses about the effects of the information-theoretic proper-

ties of the stimuli on the expectedness of individual tones and recognition memory for

tone sequences.

2.1.1. Expectedness
Based on the findings reviewed above, we hypothesize that, for individual events in

the sequences, high Information Content probe tones will produce greater unexpectedness

than low Information Content tones. We also hypothesize that expectedness of tones will

increase with greater exposure across the three listening sessions as listeners form an

increasingly accurate cognitive model of the statistical structure of the stimuli. We also

envisage that the context of the probe tone (that is, the statistical properties of the

sequence in which the tone is embedded) will influence the perceived expectedness of the

tone. Specifically we hypothesize that:

• The hypothesized relationship between information content and expectedness for

tones will hold when those tones are embedded in predictable sequences, but

• unpredictable sequences will confound the generation of expectations leading to

moderate expectations for both high and low information content events.

The underlying assumption here, following the predictive coding framework (Clark,

2013; Friston, 2010), is that successful prediction depends on having a structured context

with which to generate coherent expectations. As such, the “weight given to sensory pre-

diction error is varied according to how reliable (how noisy, certain, or uncertain) the sig-

nal is taken to be” (Clark, 2013, p. 10). In other words, the precision and strength of

expectations should reflect the predictability of the signal itself. Unpredictable contexts

are likely to generate uncertain expectations characterized by high entropy in which every

possible next event is equally likely (Hansen & Pearce, 2014). In this research, we use

the sequence measures defined above (Information Content, Coding Gain, and Predictive

Information) as operational definitions of sequence predictability. Highly unpredictable

sequences are those with high Sequence Information Content, high Sequence Predictive

Information, and low Sequence Coding Gain, and vice versa for predictable sequences.

2.1.2. Recognition memory
We hypothesize that unpredictable sequences will be more difficult to encode and

therefore yield worse memory performance and lower confidence ratings than predictable

sequences. Highly unpredictable sequences are those with high Sequence Information

Content, high Sequence Predictive Information, and low Sequence Coding Gain, and vice

versa for predictable sequences.

We further hypothesize that predictable sequences conforming to listeners’ expecta-

tions will be easier to encode (Atkinson & Shiffrin, 1968). It is also possible, however,

that unpredictable sequences, while difficult to encode in memory, will sound more dis-

tinctive than predictable sequences, thereby facilitating accurate discrimination of familiar
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from unfamiliar stimuli in recognition test performance. Considering the trade-off

between these two conflicting effects, we hypothesize that the former will prove more

influential in recalling previously heard tone sequences because the potential distinctive-

ness of unpredictable stimuli will be of little use if those stimuli are difficult to encode in

the first place. It may be the case, however, that new unpredictable sequences which have

not been previously encoded will prove more distinctive and easier to reject in the recog-

nition memory task (cf. M€ullensiefen & Halpern, 2014).

Lastly, because every tone sequence is presented in each of the three listening sessions,

we also aim to clarify the learning trajectory of the different classes of tone sequences;

that is, how auditory information represented in short-term memory gradually becomes

more richly encoded in long-term memory, and how sequential predictability, represented

by the information-theoretic measures outlined above, influences this process over time.

We hypothesize that more accurate memory performance, and increasing confidence of

recognition judgments, will arise from increased exposure to the sequences.

2.1.3. Differences between the information-theoretic measures
A further goal of this research is to examine whether listeners show different levels of

sensitivity to the different information-theoretic measures of unpredictability. Although

there is no previous empirical research on which to base a hypothesis, the three measures

described above capture different kinds of unpredictability that may vary in the extent to

which they capture aspects of listeners’ task performance. Information content is a simple

measure of the predictability of each tone in a sequence, given the preceding tone. Cod-

ing Gain, on the other hand, reflects the degree to which a tone is statistically dependent

on its predecessor in the sequence, that is, the extent to which knowing the previous tone

increases the predictability of the next tone. While these measures are derived from the

probability of particular events, Predictive Information differs in that it is derived from

predictive probability distributions. This measure reflects the divergence between the dis-

tribution of a model that sees the current event and one that does not (see definition

above). It therefore measures the extent to which the current event influences the model

observer’s uncertainty about future events, that is, a property of the observer rather than

of the sequential events per se.

2.2. Method

2.2.1. Participants
Twenty-three students (12 female and 11 male; Mage = 21.0) at Cornell University par-

ticipated in this study for extra credit in a psychology course. The participants had an

average of 1.61 years (SD = 1.88) playing music in the previous 5 years, and an average

of 5.82 years (SD = 4.54) of lifetime experience playing an instrument.

2.2.2. Stimuli
The 24 sequences in the listening sessions and 24 new sequences in the test sessions

(48 stimuli in total) each comprised 24 isochronous tones, played in a piano timbre. Each
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tone was 500 ms in duration, yielding sequences that were 12 seconds long each. The

sequences were generated using an alphabet of seven pitches (representing one octave of

the major diatonic scale starting at C4). To construct the tone sequences, many transition

matrices were generated randomly using a product of first-order Dirichlet distributions

(Bertuccelli & How, 2008), one for each column of the transition matrix. From each

matrix, one sequence of 24 notes was sampled. A subset of these was then selected man-

ually to ensure a good spread in the three-dimensional information space formed by the

distribution measures described above: Entropy Rate, Multi-Information Rate, and Predic-

tive Information Rate (see Fig. 1).

The Dirichlet distributions were biased toward a tonal transition matrix derived from

the scale degrees of Canadian folk songs/ballads, Chorale melodies, and German folk

songs in a major key (the same corpus described in table 2 of Pearce & Wiggins, 2006).

All stimuli were generated using the notes of the diatonic scale of C Major, to ensure that

the sequences were consistent in terms of tonality. Nonetheless, across all stimuli, the zer-

oth-order distribution for the seven pitches does not show significant correlations with the

Krumhansl and Kessler (1982) tone profiles for keys in major, r(5) = �.14, p = .77, or

minor, r(5) = .19, p = .68. For examples of the stimuli, please refer to Fig. 2.3

2.2.3. Procedure
After receiving written and verbal instructions, participants listened to tone sequences

in three sessions, each lasting approximately 15 min and followed by a brief test session.

In the listening sessions, participants heard each of the 24 tone sequences (presented in a

Fig. 1. The three-dimensional space from which stimuli were selected. Stimuli presented in both the listening

and test sessions are shown, as well as the distractor stimuli heard only in test sessions and not listening

sessions.
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different order in each session). On each trial, participants were asked to rate the expect-

edness of a particular tone (the probe tone) within the sequence. This tone was identified

visually on the computer screen via a clock counting down on the subsequent tones of

the sequence (Pearce, M€ullensiefen, et al., 2010; Pearce, Ruiz, et al., 2010). When the

clock returned to midnight, participants rated the expectedness of the concurrently sound-

ing tone on a scale from 1 to 5, where “1” represented highly unexpected and “5” repre-

sented highly expected. To help clarify the concept of expectedness, the experimenter

sang the pitches of a diatonic major scale and drew attention to the expectation the lis-

tener may have experienced for the culmination (octave) of the scale.

Probe tones could occur between tones 17 and 23 of each melody. This was to ensure

that listeners had sufficient exposure to each sequence prior to making an expectedness

rating. The probe tone never occurred on the last tone to avoid a possible confound of

perceptual closure.

Each listening session was followed by a test session. Sixteen test stimuli were pre-

sented in each of the three test sessions, where 16 sequences were Old (had been pre-

sented previously) and 8 were New. After each test sequence, participants responded

“Yes” or “No” to whether they had heard the sequence before. Upon responding, the lis-

tener made a confidence rating on a scale from 1 to 5 where “1” represented “not confi-

dent” and “5” represented “very confident.”

A distinct 500 ms white noise clip was played after every tone sequence in the listen-

ing and test sessions to perceptually “reset” echoic memory and ensure that expectedness

ratings and memory judgments were based only on the current trial. The study was

administered on a MacBook Pro laptop, and stimuli were presented and responses col-

lected, using Psychophysics Toolbox (Version 3) within the programming environment of

MATLAB 2010a (MathWorks, Inc., Natick, MA, USA). Participants listened to stimuli

over headphones set to a comfortable listening volume.

Fig. 2. Top: A sample tone sequence with moderately low Sequence Information Content (1.06 nats), low

Sequence Predictive Information (0.31), high Sequence Coding Gain (0.83), and low Probe Tone Information

Content (0.86). Bottom: A sample tone sequence with high Sequence Information Content (3.19), moderate

Sequence Predictive Information (0.55), low Sequence Coding Gain (�1.11), and high Probe Tone Informa-

tion Content (5.17). The probe tone in both sequences is marked with an arrow. Across all stimuli, Probe

Tone Information Content values range from 0.04 to 8.44, Sequence Information Content values range from

0.24 to 3.43, Sequence Predictive Information values range from 0.04 to 0.78, and Sequence Coding Gain

values range from �1.33 to 1.19.
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2.3. Results

2.3.1. Expectedness ratings during listening sessions
To examine which factors in the listening sessions had the greatest impact on expecta-

tion, a stepwise regression was performed to select the variables to include in a logistic

regression analysis. This approach was taken to address potential multicollinearities

between the information-theoretic factors. The chosen factors for the logistic regression

were Probe Tone Information Content, Sequence Information Content, Sequence Coding
Gain, Sequence Predictive Information, and Listening Session, with Average Expectedness
Ratings as the dependent measure. This and the subsequent stepwise regressions used

minimum AIC as the stopping rule.

As hypothesized, there was a significant main effect of Probe Tone Information Con-
tent (F(1, 64) = 117.13, p < .001), with high Information Content tones rated as less

expected (see Fig. 3). In addition to this main effect, there were significant interactions

between Probe Tone Information Content and two whole sequence measures: Probe Tone
Information Content 9 Sequence Predictive Information (F(1, 64) = 37.47, p < .001),

and Probe Tone Information Content 9 Sequence Coding Gain (F(1, 64) = 8.43,

p < .01). The sign of the model coefficients for these interactions (1.20 and �0.18,

respectively) indicate that the relationship between Probe Tone Information Content and

Expectedness is strongest when the probe tone is embedded in predictable sequences

(those with low Sequence Predictive Information or high Sequence Coding Gain). To

illustrate this interaction, we examine the influence of Probe Tone Information Content

on Expectedness in stimuli with the lowest and highest Sequence Predictive Information.

The correlation between Probe Tone Information Content and Expectedness is high for

Fig. 3. Probe Tone Information Content (in nats, where 1 nat = 1.44 bits) as a predictor of average expect-

edness ratings of probe tones.
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sequences in the lowest tercile of Sequence Prediction Information (values ranging from

0.04 to 0.16), r(22) = �.98, p < .001, but low for sequences in the upper tercile (values

ranging from 0.51 to 0.77), r(22) = �.32, p = .13.

Probe Tone Information Content had the largest effect on Expectedness ratings.4 For

visualization of this effect in Fig. 3, the average expectedness rating for each melody is

shown to display more clearly the relationship. In this analysis, Probe Tone Information

Content has a significant linear correlation with Expectedness Ratings, r(70) = �.83,

p < .001. Low Information Content tones receive consistently higher expectedness ratings

than high Information Content probe tones over the course of listening.

2.3.2. Recognition memory in test sessions
Data from the test sessions are reported in Table 2 as Proportion Correct Response.

Hits are defined as correctly identifying Old items as “heard before,” and Correct Rejec-

tions are defined as responding that a New item has not been heard before. Chance per-

formance is 0.5, and the similarity of performance for Old and New items indicates little

bias towards either response.

Despite poor recognition memory overall, we examined whether performance differed

depending on the statistical properties of the individual sequences and whether this

reflects learning of the statistical structure of the stimuli. To this end, a signal detection

analysis was performed. Because the contrast of interest was the effect of different

sequence properties (rather than differences between subjects), D-Prime and Criterion val-

ues were calculated for each sequence rather than by subject (for an example of this

approach, see Dean, Harper, & McAlpine, 2005). In addition, a Shapiro-Wilk normality

test confirmed that the three information-theoretic measures were all non-normally dis-

tributed (p < .05), mandating non-parametric analysis. Therefore, Spearman rank correla-

tions were calculated with Sequence Information Content, Sequence Coding Gain, and

Sequence Predictive Information, respectively, as predictors for D-Prime and Criterion.

There was a significant effect of each measure on D-Prime: Sequence Information Con-
tent, r(22) = �.62, p < .01; Sequence Predictive Information, r(22) = �.51, p = .01; and

Sequence Coding Gain, r(22) = .45, p < .05. More predictable sequences (with low

Information Content, low Predictive Information, or high Coding Gain) yielded higher D-

Prime values (better discrimination between Old and New sequences) than unpredictable

sequences (those with high Information Content, high Predictive Information or low

Coding Gain).

Table 2

Recognition memory test performance (proportion correct) for Old and New sequences across listening ses-

sions

Listening Session Old/Familiar (Hits) New/Unfamiliar (Correct Rejections)

Session 1 0.67 0.64

Session 2 0.63 0.65

Session 3 0.70 0.65
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Findings were similar for Criterion values, with each information-theoretic measure

producing a significant effect: Sequence Information Content, r(22) = .59; p < .01,

Sequence Predictive Information, r(22) = .48; p < .05, and Sequence Coding Gain,
r(22) = �.41, p < .05. Sequences with low average Information Content and Predictive

Information yielded lower Criterion values (more Hits) than those with high Information

Content and Predictive Information, while sequences with low average Coding Gain

yielded higher Criterion values than those with high Coding Gain.

2.3.2.1. Recognition memory test regression analysis: A logistic regression was per-

formed to further assess the effects of the information-theoretic measures on recognition

scores, and to explore whether these measures have a dynamic influence with increasing

exposure to the tone sequences. As before, a stepwise regression was first performed to

determine which factors to include in the logistic regression analysis, and the chosen fac-

tors were Sequence Information Content, Sequence Coding Gain, Sequence Predictive
Information, Familiarity (Old or New), and Listening Session, with Correct Response as

the binary dependent variable.

All three sequence measures showed significant main effects: Sequence Information Con-
tent (v²(1) = 16.21, p < .001), Sequence Predictive Information (v²(1) = 12.09, p < .001),

and Sequence Coding Gain (v²(1) = 4.27, p < .05). Listening Session interacted signifi-

cantly with each of the three sequence measures: Sequence Information Content 9 Listen-
ing Session (v²(2) = 6.14, p < .05), Sequence Predictive Information 9 Listening Session
(v²(2) = 7.98, p < .05), and Sequence Coding Gain 9 Listening Session (v²(2) = 6.53,

p < .05). There was no significant main effect of Listening Session (v²(2) = 0.55, p = .76).

The impact of the three sequence measures all followed the same pattern: No impact on

memory performance was evident initially, but by the third listening session, the measures

were significantly correlated with Correct Response. Sequence Information Content and

Sequence Predictive Information were negatively correlated with Correct Response, with

higher values of these measures leading to fewer correct responses by the last listening ses-

sion. Sequence Coding Gain was positively correlated with Correct Response, with lower

values leading to fewer correct responses by the end of the study.

The only significant interaction, including Familiarity was with Sequence Predictive

Information (v²(1) = 12.15, p < .001). As shown in Fig. 4, New sequences that are high

in Predictive Information yield more correct responses than those with low Predictive

Information. Old sequences show the opposite trend, with worse recognition memory per-

formance on high Predictive Information sequences.

2.3.2.2. Confidence ratings: Confidence ratings for recognition memory judgments were

collected after every test sequence; responses were made on a 1–5 scale where “1” repre-

sented not confident and “5” represented very confident. A stepwise regression was used

to select the factors to include in the ordinal logistic regression for confidence ratings,

and as above, those selected were Sequence Information Content, Sequence Coding Gain,

Sequence Predictive Information, Familiarity (Old or New stimulus), and Listening Ses-

sion. This analysis yielded significant effects of Sequence Information Content
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(v²(1) = 11.87, p < .01), Sequence Predictive Information (v²(1) = 12.50, p < .01), and

Sequence Coding Gain (v²(1) = 11.59, p < .01), and the interaction of Sequence Informa-
tion Content 9 Listening Session (v²(8) = 7.92, p < .05).

Fig. 4. The differential effect of Sequence Predictive Information on Proportion Correct Response during

recognition memory tests for New and Old sequences. Note that Proportion Correct Response is used here

rather than the categorical variable Correct Response for clarity of illustration.
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As hypothesized, listeners made more confident memory judgments when sequences

had lower Information Content, lower Predictive Information, and higher Coding Gain.

High Information Content sequences showed a decreasing level of confidence from Ses-

sion 1 to Session 3.

2.4. Discussion

The results shed light on implicit statistical learning of novel sequential stimuli and go

beyond previous research in showing, first, that statistical learning has an impact on

recognition memory performance for tone sequences and, second, that expectations for

individual tones, based on knowledge acquired through statistical learning, are dependent

on the predictability of the entire stimulus. The results also highlight the information-the-

oretic properties that underlie these effects.

Regarding expectations for individual tones, there was a consistent negative relation-

ship between Information Content and expectedness (such that high Information Content

tones elicit greater unexpectedness) as hypothesized based on previous research with

stylistically familiar stimuli (e.g., Hansen & Pearce, 2014; Pearce, 2005; Pearce, M€ullen-
siefen, et al., 2010; Pearce, Ruiz, et al., 2010). Surprisingly, there were no main or inter-

action effects of listening session, suggesting that, beyond the first session, expectations

did not vary with increasing exposure to the stimuli. The primary novel finding is that

this relationship between Information Content and expectedness depends on the overall

predictability of the preceding context, as hypothesized based on predictive coding theory

(Clark, 2013; Friston, 2010; Friston & Kiebel, 2009). Specifically, while the negative cor-

relation between probe Information Content and expectedness was observed for stimuli

with low Sequence Predictive Information, there was no correlation for stimuli with high

Sequence Predictive Information. The same pattern was also evident with Sequence Cod-

ing Gain, though the effect was weaker. The pattern was not evident for sequence Infor-

mation Content, but it is likely that this is because probe Information Content is highly

correlated with sequence Information Content due to the way in which the stimuli and

probe positions were generated and selected. The results suggest that unpredictable

sequences (those with high sequence Predictive Information or low Coding Gain) com-

promise listeners’ generation of strong expectations such that all probe tones (whether

low or high in Information Content) are rated as moderately expected, which is indicative

of an uncertain (or high entropy) prediction.

Regarding recognition memory, overall performance was consistently poor across the

three sessions. In spite of this, performance for individual stimuli (measured using D-

Prime and Criterion) did systematically vary with all three sequence measures. Unpre-

dictable sequences (those with high Information Content, high Predictive Information, or

low Coding Gain) produced worse memory performance and lower confidence ratings

than predictable sequences (with low Information Content, low Predictive Information, or

high Coding Gain). Interestingly, the influence of these sequence measures on recognition

memory increased with exposure to the stimuli. Sequence Information Content did not

have an impact on memory performance initially, but by the third session, it was
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negatively correlated with Correct Response. This pattern was accompanied by decreasing

confidence ratings over test sessions for high Information Content sequences. For memory

performance (though not confidence), the same effect was found with Sequence Predic-

tive Information and Coding Gain. Furthermore, the significant interaction between

Familiarity (Old vs. New stimulus) and Sequence Predictive Information is consistent

with the hypothesis that unpredictability (due in this case to high Predictive Information)

would impair initial encoding of familiar (Old) stimuli, making them more difficult to

recognize subsequently, but would increase the distinctiveness of unfamiliar (New) test

items, facilitating accurate discrimination and making correct rejection easier.

3. Computational simulations

In this section, we develop computational simulations of the behavioral data that shed

light on the cognitive representations and processes involved in implicit statistical learn-

ing of this novel stimulus domain. The pattern of results reported above suggests a trajec-

tory of changing memory performance, becoming increasingly associated with the

information-theoretic properties of the stimuli over time. However, the generative and

analytical models (used, respectively, to create the stimuli and compute their information-

theoretic properties) only reflect learning within stimulus sequences and not across stimuli

within the session as a whole.

To simulate statistical learning both across and within stimuli, we use a probabilistic

computational model of auditory expectation (IDyOM) developed, and described in detail,

in previous research (Pearce, 2005).5 IDyOM implements a model of statistical learning

and has been shown to accurately account for listeners’ pitch expectations in behavioral,

physiological and EEG studies (e.g., Egermann et al., 2013; Hansen & Pearce, 2014;

Omigie et al., 2012, 2013; Pearce, 2005; Pearce, Ruiz, et al., 2010), and simulate audi-

tory boundary perception (Pearce, M€ullensiefen, et al., 2010). In many circumstances,

IDyOM provides a more accurate model of listeners’ pitch expectations than static rule-

based models (e.g., Narmour, 1990; Schellenberg, 1996, 1997), suggesting that expecta-

tion reflects a process of statistical learning and probabilistic generation of predictions

(Hansen & Pearce, 2014; Pearce, 2005; Pearce, Ruiz, et al., 2010).

Information dynamics of music has not yet been investigated as a cognitive model of

memory for auditory sequences providing a further motivation for the present simulations.

The following section gives a summary of the main features of IDyOM before presenting

in detail the parameters varied in the simulations. Comparing models with different

parameters against the results of the behavioral study allows inferences to be made about

the cognitive mechanisms that underlie listeners’ performance.

3.1. IDyOM model

Information dynamics of music learns dynamically about sequential dependencies in

the auditory environment to which it is exposed and generates probabilistic predictions

K. Agres, S. Abdallah, M. Pearce / Cognitive Science (2017) 17



about properties of events (pitch in the present case) for each tone in a tone sequence,

given the context of the preceding sequence. The output is a conditional probability dis-

tribution predicting the pitch of the next tone, from which the estimated probability of

the actual next tone may be extracted. Information content is the negative log probability

of a tone (see Section 2) and reflects the unexpectedness of that tone from the perspective

of the model. Previous research has shown that Information Content generated by IDyOM

accurately simulates listeners’ pitch expectations (Hansen & Pearce, 2014; Omigie et al.,

2012; Pearce, 2005; Pearce, Ruiz, et al., 2010). In comparison to the first-order models

used to generate and analyze stimuli for the behavioral study, IDyOM is a sophisticated

variable-order Markov model (Begleiter, El-Yaniv, & Yona, 2004) that has a flexible rep-

resentation scheme (Conklin & Witten, 1995) and can combine information from short-

term and long-term models. We now describe these features in further detail, to the extent

that they bear on the present simulations.

Information dynamics of music is based on a Markov or n-gram model (Manning &

Sch€utze, 1999, ch. 9), which computes the conditional probability of a note given the

n � 1 preceding notes in the melody. The quantity n � 1 is called the order of the

model. Basic Markov models, such as the model used to generate the stimuli, have a

fixed order. For the present stimuli, a zeroth-order model is simply the frequency of

occurrence for each of the seven possible tones. A first-order model is a transition matrix

containing the frequency with which each of the seven tones appears following each tone

at the immediately preceding position in the sequence. Fixed-order models suffer from a

variety of problems, including the question of selecting the appropriate order and the so-

called zero-frequency problem—how to estimate a non-zero probability for a tone that

has not yet appeared in a particular context. IDyOM addresses these problems using

methods developed in research on data compression (Bell, Cleary, & Witten, 1990; Bun-

ton, 1997) and statistical language modeling (Begleiter et al., 2004; Manning & Sch€utze,
1999). First, the order is allowed to vary at different points in the sequence and, second,

a weighted average of probabilities is computed from models of different order, a process

known as smoothing (Begleiter et al., 2004; Bell et al., 1990; Bunton, 1997; Manning &

Sch€utze, 1999). The maximum order may be fixed at a particular value or may be free to

vary, in which case the longest matching context is used, which may vary at each posi-

tion in a sequence (Bunton, 1997). In the present research, we compare variable-order

models with models whose order is limited to zero (zeroth-order models) and one (first-

order models).

Information dynamics of music has two subcomponents that may be configured to be

used either individually or together. The first is a long-term model (LTM) that is trained

on an entire corpus (simulating learning based on a listener’s long-term schematic expo-

sure to music), and the second is a short-term model (STM), which is exposed incremen-

tally to the current stimulus (simulating local learning of structure and statistics in the

current listening episode). The LTM is static once trained while a variant of this subcom-

ponent, called the LTM+, continues to learn dynamically from the sequences to which it

is subsequently exposed. The LTM+ may or may not be pre-trained on a corpus like the

LTM. While the LTM+ learns incrementally across stimuli, the STM begins each new
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stimulus as a tabula rasa and learns incrementally within that tone sequence without car-

rying any learning over between stimuli. The distributions generated by the STM and

LTM/LTM+ may be combined—various approaches are possible, but here we use a geo-

metric mean, weighted by the entropy of the distribution generated by each subcompo-

nent (Conklin & Witten, 1995; Hinton, 2002; Pearce, 2005). Combining the STM and

LTM yields a BOTH configuration while combining the STM and LTM+ yields a

BOTH+ configuration.

The LTM+ corresponds to the cognitive model assumed in many studies of statistical

learning (e.g., Saffran et al., 1999), although learning is often assumed to take place only

for the exposure stimuli and not for test items (which are included in the LTM+). Given
pervasive evidence of dynamic learning across stimuli, including test items (e.g., Rohrme-

ier, Rebuschat, & Cross, 2011), the STM and LTM variants are not examined in the pre-

sent research, leaving the LTM+ and BOTH+ configurations for simulations of listeners’

responses. The LTM+ and BOTH+ models used in the present simulations have no prior

training before being exposed to the stimuli making up an experimental session. The ana-

lytical model introduced in Section 2 does not correspond to any of the IDyOM configu-

rations, but it could be described as an STM initialized with a bigram table estimated

from a corpus of Western tonal music.

Finally, IDyOM has the ability to use different pitch features (e.g., chromatic pitch,

sequential pitch interval) to predict properties of tones (see Conklin & Witten, 1995;

Pearce, 2005), which is important given evidence that listeners represent pitch in different

ways (e.g., Levitin & Tirovolas, 2009; Shepard, 1982). The present research focuses on

models that use either pitch or pitch interval representations.

3.2. Method

The models selected for the simulation varied in terms of three factors: model configu-

ration (LTM+ or BOTH+), model order (zero, first, or variable order), and feature (chro-

matic pitch or pitch interval). The output of the resulting 12 models was examined to

find which best simulates the mean Expectedness ratings and D-Prime memory scores

from the behavioral study. To compare the IDyOM simulations to listeners’ responses,

we use the information content of the specified probe tone in the case of expectations.

For simulating memory performance, we use the average information content for the

whole stimulus, under the hypothesis that more unpredictable stimuli should be less accu-

rately encoded (see Section 2.1.2). We complement these analyses of model fit with

human expectedness and memory performance with additional analyses of intrinsic model

performance in predicting the stimuli. We use information content as a measure of pre-

diction performance because low information content indicates that the model is able to

predict a stimulus with high probability. These analyses are conducted both for the infor-

mation content of probe tones in the listening sessions and for mean information content

of each stimulus in the test sessions.
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3.3. Hypotheses

First and foremost, we hypothesize that IDyOM will be able to successfully simulate

listeners’ performance on both the expectation and memory tasks from the behavioral

study and, specifically, that expectedness for individual tones will correlate negatively

with information content, while memory performance will correlate negatively with the

information content averaged across all notes in a sequence.

The BOTH+ models are expected to simulate listeners’ performance better than LTM+
models because they are more cognitively plausible, simulating both local learning within

a stimulus (the STM) and long-term incremental learning of statistical structure with

increasing exposure to the stimuli (the LTM+). This configuration reflects a long history

of research on human memory that has incorporated both short-term and long-term com-

ponents (Baddeley, Papagno, & Vallar, 1988; Ericsson & Kintsch, 1995; Hulme,

Maughan, & Brown, 1991).

The chromatic pitch feature and pitch interval feature are compared to ascertain

whether listeners represent the stimuli in terms of absolute or relative pitch structure. We

hypothesize that the pitch feature will be optimal for modeling pitch expectation (as we

specifically requested listeners to rate the expectedness of the pitch of the probe tone),

while pitch interval information will best simulate memory for sequences, because pitch

interval structure has been shown to be important in memory for melodic sequences (e.g.,

Dowling, 1991).

Finally, we compare models with a fixed order bound of zero, a fixed order bound of

one, and a variable order bound (no fixed order), to examine whether listeners are taking

advantage of any higher-order structure in the stimuli. Listeners are sensitive to zeroth-

order pitch distributions in music (Krumhansl, 1990; Oram & Cuddy, 1995) but also

show influence of higher-order statistical structure on their expectations (Hansen &

Pearce, 2014; Krumhansl et al., 2000). In the present study, because the stimuli were

generated using a first-order pitch model, we postulate that first-order pitch models or

zeroth-order interval models (since an interval spans two pitches, a zeroth-order interval

model is more comparable to a first-order pitch model than a first-order interval model)

would best simulate listeners’ responses, with only limited benefit from using higher-

order models.

3.4. Results

The results of the 12-model comparison for expectedness ratings from the behavioral

study are shown in Table 3. A BOTH+ zeroth-order model with an interval feature best

simulated listeners’ expectedness responses (r(22) = �.86, p < .01), providing the highest

correlations in each listening session and overall. No statistical difference, however, was

found between this and the next best performing model, a BOTH+ first-order model also

using the interval feature (Williams’ t(69) = 1.42, p = .16). The model did perform better

than the third-best model, a BOTH+ zeroth-order model using the chromatic pitch feature

(Williams’ t(69) = 1.97, p = .05).
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The results of the 12-model comparison for memory test D-Prime scores from the

behavioral study are shown in Table 4. Parsimoniously, the same BOTH+ model configu-

ration using the pitch interval feature yields the highest correlation with average memory

performance (r(22) = �.72, p < 0.01). As for the expectedness results, no statistically

significant difference was found between the zeroth- and first-order models for this

BOTH+ interval configuration (Williams’ t(21) = 0.76, p = .45), and again the best-fitting

model’s performance was superior to the third-best performing model (an LTM+ first-

order model using pitch interval, Williams’ t(21) = 2.36, p < .05). Interestingly, all

models performed poorly in the first test session, but correlations increased for later test

sessions (see Table 4), suggesting that listeners’ memory performance was increasingly

well simulated by the models with each listening session.

Turning now to model performance, probe information content generated by the

BOTH+ pitch-interval models in the three listening sessions was submitted to a 3 9 3

ANOVA with model order (0, 1, variable) and session number (1, 2, 3) as independent vari-
ables. The results show a significant main effect of model order, F(2, 207) = 8.28,

p < .01, but no main effect, or interaction effect of session number. Post hoc t-tests sug-

gest that the significant main effect of model order arises because the information content

of the variable order model is significantly different from that of both the first-order

model, t(44.98) = 2.28, p = .03, and the zeroth-order model, t(38.9) = 2.15, p = .04,

while the latter two models do not differ significantly, t(42.3) = 0.27, p = .79. Finally,

average sequence information content generated by the BOTH+ pitch-interval model in

the three test sessions was submitted to a 3 9 3 ANOVA with model order (0, 1, variable)

and session number (1, 2, 3) as independent variables. The results showed no significant

main or interaction effects.

Table 3

Information dynamics of music simulations of expectedness ratings, showing correlation coefficients between

expectedness and probe tone information content for each listening session individually (DF = 22) and across

all three sessions (DF = 70)

Configuration Order Feature Session 1 Session 2 Session 3 Overall Correlation

LTM+ Zero Pitch �0.45 �0.16 �0.20 �0.29

LTM+ First Pitch �0.64 �0.58 �0.62 �0.61*

LTM+ Variable Pitch �0.66* �0.85* �0.37* �0.51*

BOTH+ Zero Pitch �0.78* �0.79* �0.80* �0.79*

BOTH+ First Pitch �0.76* �0.68* �0.70* �0.71*

BOTH+ Variable Pitch �0.71* �0.69* �0.45* �0.57*

LTM+ Zero Interval �0.58 �0.45 �0.49 �0.50*

LTM+ First Interval �0.76* �0.72* �0.72* �0.73*

LTM+ Variable Interval �0.78* �0.76* �0.60* �0.67*

BOTH+ Zero Interval �0.89* �0.85* �0.86* �0.86*
BOTH+ First Interval �0.84* �0.82* �0.83* �0.83*

BOTH+ Variable Interval �0.81* �0.77* �0.65* �0.71*

Note. *Denotes p < .001 (Bonferroni corrected). Bold type indicates highest correlation in each column.

Italic type indicates the model with the highest overall correlation.

K. Agres, S. Abdallah, M. Pearce / Cognitive Science (2017) 21



3.5. Discussion

As hypothesized, the information content of probe tones returned by IDyOM accurately

simulated expectedness ratings, accounting for up to 74% of the variance overall. Infor-

mation content did not vary with increasing exposure, as with listeners’ expectations. Of

particular interest, however, is the novel finding that overall memory performance showed

significant correlations with mean information content, suggesting that memory perfor-

mance is worse for more unpredictable sequences (those with higher information content).

Further, the results corroborate the finding that listeners’ memory performance dynami-

cally changes across test sessions, with performance becoming more strongly aligned to

the information content of sequences over the course of exposure. Information content

accounts for up to 85% of variance in memory performance by the final session.

In both cases, parsimoniously, the best-fitting models are zeroth- and first-order

BOTH+ pitch-interval models (the fit of zeroth- and first-order models is statistically

indistinguishable). The BOTH+ configuration indicates that dynamic statistical learning

takes place both within individual stimuli (simulated by the STM component) and across

stimuli throughout the course of the experimental session (simulated by the LTM+ com-

ponent).6 The fact that pitch interval representations best match human performance is

consistent with our hypothesis for memory performance, given strong prior evidence

(Dowling, 1991). However, it is inconsistent with our hypothesis for pitch expectations

and also inconsistent with the models used to generate and analyze the stimuli in Sec-

tion 2. Pitch interval is a more abstract representation than pitch, since an interval can

map onto many concrete pairs of pitches. It seems likely that this more abstract represen-

tation facilitates better generalization of statistical learning across stimuli, both for

IDyOM and for listeners.

Table 4

Information dynamics of music simulations of memory performance, showing correlation coefficients between

D-prime score and sequence information content for each test session individually (DF = 6) and across all

three sessions (DF = 22)

Configuration Order Feature Session 1 Session 2 Session 3 Overall Correlation

LTM+ Zero Pitch 0.21 �0.30 �0.46 �0.20

LTM+ First Pitch �0.23 �0.65 �0.51 �0.48

LTM+ Variable Pitch �0.30 �0.69 �0.74 �0.34

BOTH+ Zero Pitch �0.15 �0.66 �0.75 �0.48

BOTH+ First Pitch �0.13 �0.71 �0.80 �0.56

BOTH+ Variable Pitch �0.36 �0.71 �0.83 �0.42

LTM+ Zero Interval �0.21 �0.61 �0.80 �0.53

LTM+ First Interval �0.27 �0.75 �0.88 �0.60

LTM+ Variable Interval �0.34 �0.76 �0.81 �0.41

BOTH+ Zero Interval �0.40 �0.81 �0.92 �0.70*

BOTH+ First Interval �0.48 �0.81 �0.91 �0.72*
BOTH+ Variable Interval �0.36 �0.78 �0.84 �0.44

Note. *Denotes p < .001 (Bonferroni corrected). Bold type indicates the highest correlation in each col-

umn. Italic type indicates the model with the highest overall correlation.
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Given that the stimuli were generated using a first-order model combined with ample

evidence that listeners are capable of learning first-order statistics (e.g., Romberg & Saf-

fran, 2010), it might seem surprising that the first-order models do not account better than

zeroth-order models for both expectedness and memory performance. Recall, however,

that the input to the best-fitting models is the pitch interval (i.e., log frequency difference)

between successive tones in the stimuli. Therefore, a zeroth-order pitch-interval model

actually represents statistical information about pairs of tones. In this way, it is similar to

the first-order pitch model that was used to generate the stimuli and, therefore, may

encode first-order statistical regularities in pitch. Furthermore, the IDyOM performance

results show that there is not significantly more first-order pitch-interval information in

the stimuli than zeroth-order pitch-interval information, so the lack of difference between

first- and zeroth-order models in fit with human performance is consistent with the statis-

tical structure of the stimulus.

The fact that the variable-order IDyOM model produced lower mean information con-

tent for the probe tones than the zeroth- and first-order models, suggests the presence of

higher-order structure in the stimuli (i.e., better prediction from contexts longer than one

tone). This may reflect IDyOM recognizing exact repetitions of stimuli, but the effect

was not replicated for the average information content of stimuli in the test sessions. Cer-

tainly, there was no evidence that participants made use of any higher-order structure and

the results for memory performance also suggest that they were learning generalized

statistical structure rather than individual stimuli.

Regarding the effects of exposure, neither probe information content, nor expectedness,

nor the correlation between the two vary across sessions, suggesting that both listeners

and IDyOM learn pointwise statistical regularities present in the stimuli relatively quickly

during the first session. Interestingly, however, the correlations between memory perfor-

mance and information content do increase dramatically over the course of the three

memory test sessions. As with probe information content, there is no evidence that mean

sequence information content varies across the three sessions, suggesting again that

IDyOM learns the regularities present in the stimuli relatively quickly during the first ses-

sion. However, listeners’ memory performance becomes more systematically related to

information content with increasing exposure. Mean information content (from the zeroth-

and first-order pitch interval BOTH+ models respectively) accounts for 16% and 23% of

the variance in memory performance for Session 1. This rises to 66% (for both models)

in Session 2, and it rises again to 85% and 83% in Session 3. While information content

provides a convincing account of memory performance in the final session, the IDyOM

simulations do not explain why memory performance shows weaker correlations with

information content in the first two sessions. Explanations for this trajectory are consid-

ered further in Section 4.

Finally, because the stimuli used pitches drawn from a diatonic scale, we investigated

the performance of IDyOM models for which the LTM+ was given pre-training on a cor-

pus of Western tonal music. Pre-training did not improve performance for either the

Expectedness or Memory simulations, suggesting that listeners dynamically and implicitly

acquired a new cognitive representation of statistical regularities in the stimuli over the

K. Agres, S. Abdallah, M. Pearce / Cognitive Science (2017) 23



course of the study. For full details and results of these simulations please consult the

Appendix A.

4. General discussion

Whereas, existing research on auditory statistical learning has focused either on seg-

mentation (e.g., Romberg & Saffran, 2010) or artificial grammar learning (e.g., Perruchet

& Pacton, 2006; Rohrmeier et al., 2011), the present research examines the effects of

auditory statistical learning on expectation and recognition memory, using a combination

of behavioral investigation and computational simulation. The results suggest that perfor-

mance is significantly related to information-theoretic properties of the stimuli and that

the cognitive processes involved can be simulated using low-order probabilistic models

that dynamically learn the statistical regularities in pitch interval both within and across

stimuli. Of particular interest is the novel finding that recognition memory performance is

systematically related to the information-theoretic predictability of stimuli. We discuss

these findings in terms of the literature on auditory perception, statistical learning, and

predictive coding.

4.1. Expectedness

The results confirm the relationship between auditory expectations and information

content arising from statistical learning of these sequences. Importantly, previous research

demonstrating this relationship has used music as a domain in which listeners already

have prior experience (Hansen & Pearce, 2014; Omigie et al., 2012; Pearce, 2005;

Pearce, Ruiz, et al., 2010). The present results extend these findings to relatively short-

term learning of a novel set of auditory stimuli, providing further evidence for IDyOM as

a model of domain-general predictive mechanisms in cognitive processing of auditory

sequences.

Following exposure to a novel set of artificially constructed auditory sequences, listen-

ers generate expectations that reflect the models used to generate the individual sequences

(see also Loui, Wessel, & Kam, 2010). However, their expectations are better character-

ized by models that dynamically learn the statistics of pitch interval relationships within

and across stimuli. Statistical learning of pitch intervals has been previously demonstrated

(Saffran & Griepentrog, 2001; Saffran et al., 2005) and we have argued that in the pre-

sent context, pitch intervals afford a more abstract representation than pitch, allowing

more powerful generalization of statistical patterns across stimuli.

The results also show that expectations for events depend not only on the information

content of the current event but also on the overall predictability of the context within

which it is embedded. In predictable contexts, listeners generate expectations that con-

form to the probabilistic model, but for tones embedded in unpredictable contexts, they

generate moderate expectations, regardless of the information content of the tone itself.

Predictive coding theory suggests that to maintain an accurate model of the sensory
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signal, an agent must modulate top-down predictions to minimize surprise (Clark, 2013;

Friston, 2010; Friston & Kiebel, 2009). The present results are consistent with this, sug-

gesting that globally unpredictable sequences do not allow for the generation of strong,

specific top-down predictions but instead produce uncertain, high-entropy expectations

even when there is local predictable structure in the signal (i.e., the probe tone is pre-

dictable given the preceding tone).

The IDyOM models that best account for listeners’ expectation (and memory) perfor-

mance integrate information generated by dynamic statistical learning of two kinds: first,

information learned incrementally within each stimulus; second, information learned

incrementally across all stimuli in the study. This is congruent with evidence that listen-

ers are sensitive to statistical information in auditory sequences on both short (e.g., Oram

& Cuddy, 1995) and long timescales (e.g., Krumhansl, 1990). The relative influence of

the top-down predictions from IDyOM’s long- and short-term models is adjusted accord-

ing to the entropy, or uncertainty, of the distributions they generate. Once again, this

approach is compatible with predictive coding theory, where prediction errors are

weighted by their precision or uncertainty (Friston, 2010).

Both the dynamic nature of the learning and the effects of short-term learning within

stimuli have implications for existing research on implicit statistical learning of unfamil-

iar sequential stimuli (e.g., Conway & Christiansen, 2005, 2006; Loui et al., 2010; Per-

ruchet & Pacton, 2006; Saffran, 2003b). In particular, research on implicit statistical

learning must now assume that participants learn throughout an experimental session,

both within and across stimuli—learning does not end with the exposure phase (see also

Rohrmeier et al., 2011). In future research, it would be useful to explicitly examine learn-

ing within and across stimuli by systematically varying the degree of statistical structure

that is shared across individual stimuli.

4.2. Recognition memory

Overall memory performance was consistently poor across the three sessions, in line

with previous research using more stylistically familiar stimuli (e.g., Bartlett et al., 1995;

Dowling et al., 2008; Halpern & Bartlett, 2010; Halpern & M€ullensiefen, 2008).

Although the overall proportion of correct responses remained similar across the three test

sessions, the types of errors listeners made varied as a function of the statistical properties

of the sequences and the degree to which the listener had been exposed to them. This

result confirms the hypothesized relationship between information-theoretic measures of

predictability and recognition memory, and provides the beginnings of a plausible compu-

tational model of the cognitive processing underlying findings that stylistically unfamiliar

or complex stimuli yield poor recognition memory (Cuddy, Cohen, & Mewhort, 1981;

Halpern & Bartlett, 2010; N€a€at€anen, Schr€oger, Karakas, Tervaniemi, & Paavilainen,

1993).

What underlies these effects? We hypothesized that unpredictable sequences would be

difficult to encode, leading to poorer memory performance for familiar stimuli when they

are presented again, but also that unfamiliar unpredictable sequences presented as foils in
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the test phases might be more distinctive, thereby facilitating accurate discrimination. The

results validate these hypotheses because unpredictable stimuli (specifically, those with

high predictive information) produce more misses for targets (familiar test items) but also

more correct rejections of foils. The present results provide evidence regarding the infor-

mation-theoretic stimulus properties and underlying statistical model that account for the

perception of predictability and distinctiveness in causing these effects. Further research

is required to examine whether this pattern of results extends to stylistically familiar

materials and other domains, such as language.

Previous research on statistical learning using segmentation tasks (Creel, Newport, &

Aslin, 2004; Saffran & Griepentrog, 2001; Saffran, Aslin, et al. 1996; Saffran, Newport,

et al. 1996; Saffran et al. 1999, 2005) demonstrates that individuals can learn the statisti-

cal structure of artificial sequences and use these learned representations to segment

where first-order probabilities are low (see also Brent, 1999; Elman, 1990; Pearce,

M€ullensiefen, et al., 2010). The present research extends these findings to the effects of

statistical learning on the cognitive processes of expectation and memory. The segmenta-

tion task depends on these processes because participants must generate probabilistic

expectations based on the learned statistical properties of the exposure phase in order to

identify grouping boundaries where transition probabilities are low. They must also hold

sequences in memory in order to match incoming sequences to the learned model (though

the sequences are much shorter than those used in the present research). Conversely, it is

possible that the memory advantages observed in the present research for predictable

stimuli (of much greater length) arise because these stimuli can be represented in memory

as a smaller number of longer chunks than is the case for unpredictable stimuli.

With repeated listening, memory performance became significantly more aligned with

the information-theoretic predictability of the stimulus sequences. Overall memory perfor-

mance did not improve over the three listening sessions but, with increasing exposure,

performance became worse, and confidence became lower, for unpredictable stimuli. This

suggests that participants were learning the statistical regularities describing the stimuli

rather than the particular exemplars themselves (Cleeremans et al., 1998; Halpern & Bar-

tlett, 2010; Loui et al., 2010; Saffran et al., 1999; Stadler & Frensch, 1998). Had we used

fewer and/or more brief stimuli, recognition memory performance might have been better

(see Loui & Wessel, 2008), but this would also likely have resulted in less abstraction of

the underlying statistical relationships across stimuli (Cleeremans et al., 1998).

Expectations are well simulated by information content in the first session and do not

change thereafter, suggesting that statistical learning occurs primarily within the first ses-

sion. However, recognition memory shows a trajectory across sessions, with information

content accounting increasingly well for performance from Session 1 (23% of variance

explained) to Session 3 (85% of variance explained). Thus, while IDyOM simulates

memory performance very well in the final session, it does not account for this trajectory.

We consider two possible interpretations. First, it may be that statistical learning takes

place across all three sessions, influencing memory performance, but stops having an

impact on expectation after the first session (for example, due to ceiling effects if the

expectation task is much easier than the memory task). Second, it may be that statistical
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learning takes place primarily within the first session but that further exposure is required

for the listener’s learned internal predictive model to have an impact on the encoding and

consolidation of memory representations for the stimuli. The two interpretations are not

mutually exclusive and further research is required to disentangle them.

Overall the simulation results suggest that learning of statistical structure is rapid, con-

tinuous, and implicit, and takes place dynamically and continuously both within and

across stimuli, incrementally developing more accurate cognitive models of the statistical

structure of the stimuli. Importantly, the results suggest that when confronted with an

unfamiliar auditory environment, rather than updating an existing cognitive representa-

tion, listeners construct a new cognitive model to describe the statistical structure of the

environment. This is consistent with a central tenet of predictive coding theory (Clark,

2013; Friston, 2010), that perception is a process of active inference and continuous

refinement to achieve parsimonious models of the sensory environment (see also Barlow,

1959; Dayan et al., 1995; Gregory, 1980; Helmholtz, 1866). It would be interesting to

examine how much and what kinds of unpredictability can be tolerated before prior mod-

els are discarded. This question has implications for research on auditory statistical learn-

ing more widely where artificially constructed auditory sequences are in some cases

assumed to invoke a prior model (e.g., Oram & Cuddy, 1995) and in other cases not

(e.g., Loui et al., 2010; Saffran et al., 1999).

4.3. Conclusion and future directions

In summary, the behavioral study and IDyOM simulations clarify how listeners repre-

sent and process novel sequential auditory stimuli. The results indicate that information-

theoretic properties of sequential stimuli have an impact on both expectation and recogni-

tion memory. Furthermore, they provide the beginnings of a quantitative model of the

dynamic cognitive processes involved in implicit statistical learning of the regularities

present in novel sequential auditory stimuli. In the process of acquiring an internal pre-

dictive model, statistical information appears to contribute over different time-scales to

ongoing sequential processing, consistent with hierarchical predictive coding theory

(Clark, 2013): first, momentary expectations are based on the information content of the

current event; second, the predictability of the entire stimulus has an impact on expecta-

tion and memory processing; and third, the properties of the entire stimulus set, learned

incrementally over time, influence expectation and memory for tone sequences. Further

research might extend the present results to stimuli containing temporal structure, higher-

order statistical relationships (Hansen & Pearce, 2014; Krumhansl et al., 2000) and rela-

tionships between non-adjacent events in pitch sequences (Creel et al., 2004).

Notes

1. Referred to as Redundancy in Abdallah and Plumbley (2009).
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2. Referred to as instantaneous predictive information in Abdallah and Plumbley

(2009).

3. The complete set of stimuli created for this study is available online at http://web

projects.eecs.qmul.ac.uk/marcusp/software/AgresAbdallahPearceStimuli.zip.

4. Note that probe tones could occur between tones 17 and 23 of each tone sequence,

and that in this regression analysis, whole sequence measures are computed for the

entire sequence of tones. For comparison, the same regression analysis as the one

described above was performed using sequence measures calculated only to the
point of the probe tone in each sequence. Because the probe tone always occurred

near the end of each stimulus, sequence measures reflecting the entire sequence

were very highly correlated with measures based only on the events prior to and

including the Probe tone. Therefore, and not surprisingly, this analysis yielded the

same results as the regression analysis presented above. Using sequence measures

computed for the entire sequence allows use of the same measures for Expected-

ness Ratings and Memory test results.

5. Software and documentation are available from https://code.soundsoftware.ac.uk/

projects/idyom-project

6. The fact that the BOTH+ provides a better fit than the LTM+ demonstrates that the

STM component makes a significant contribution to simulating listeners’ responses.

The BOTH+ interval model also produced higher correlations with both memory

performance and expectedness ratings than first- and zeroth-order STM interval

models, demonstrating the contribution of the LTM+. Finally, the best-performing

IDyOM model also yields higher correlations with expectedness ratings and mem-

ory performance than the analytical model introduced in Section 2.
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Appendix A: IDyOM simulations with pre-training on a corpus of music

Research suggests that musical expectation depends on incidental exposure to Western

tonal music (Bharucha, 1987; Huron, 2006; Meyer, 1956), but it is unclear whether this

prior musical knowledge contributes to expectation and memory for novel sequences that

lack stylistically familiar structure. Framed more generally, how does previously encoded

knowledge have an impact on statistical learning and memory representations for struc-

turally unfamiliar stimuli?

To address this question, the simulations reported in Section 3 were compared with

models pre-trained on a corpus of Western tonal music. The LTM+ was trained using a

corpus of 905 Western folk songs and hymns (Bach chorale melodies, German folk songs

and Canadian ballads) used in previous research (see Pearce & Wiggins, 2006, table 2) to

simulate, at a general level, the long-term schematic exposure of an average Western lis-

tener. We chose this corpus because models trained on it have been found to simulate

accurately listeners’ pitch expectations (Hansen & Pearce, 2014; Omigie et al., 2012,

2013; Pearce, 2005; Pearce, Ruiz, et al., 2010). Furthermore, this was the same corpus

used to construct the prior for the model that generated the stimuli in the behavioral

study.

We hypothesized that if listeners did not draw upon their schematic knowledge of

Western tonal music, but instead acquired a new cognitive representation of the statistical

32 K. Agres, S. Abdallah, M. Pearce / Cognitive Science (2017)



structure of the stimuli through exposure, then performance on both tasks should be better

simulated by BOTH+ models without pre-training (see Section 3) than those reported

here in the Appendix. The simulation results are reported in Tables A1 (expectedness)

and A2 (memory). Pre-training did not improve the accuracy of either the expectedness

or memory simulations.

Table A1

Pre-trained information dynamics of music simulations of expectedness ratings, showing correlation coeffi-

cients between expectedness and probe tone information content for each listening session individually

(DF = 22) and across all three sessions (DF = 70).

Configuration Order Feature Session 1 Session 2 Session 3 Overall Correlation

LTM+ Zero Pitch 0.02 0.01 0.01 0.02

LTM+ First Pitch �0.43 �0.41 �0.41 �0.42*

LTM+ Variable Pitch �0.66* �0.85* �0.47* �0.52*

BOTH+ Zero Pitch �0.77* �0.79* �0.79* �0.78*

BOTH+ First Pitch �0.58 �0.53 �0.53 �0.54*

BOTH+ Variable Pitch �0.75* �0.76* �0.59* �0.62*

LTM+ Zero Interval �0.27 �0.24 �0.24 �0.25

LTM+ First Interval �0.37 �0.41 �0.4 �0.39*

LTM+ Variable Interval �0.57 �0.61 �0.54 �0.49*

BOTH+ Zero Interval �0.88* �0.83* �0.84* �0.85*
BOTH+ First Interval �0.64* �0.67* �0.69* �0.66*

BOTH+ Variable Interval �0.67* �0.7* �0.61* �0.58*

Note. *Denotes p < .001 (Bonferroni corrected). Bold type indicates highest correlation in each column.

Italic type indicates the model with the highest overall correlation.

Table A2

Pre-trained information dynamics of music simulations of memory performance, showing correlation coeffi-

cients between D-prime score and sequence information content for each test session individually (DF = 6)

and across all three sessions (DF = 22).

Configuration Order Feature Session 1 Session 2 Session 3 Overall Correlation

LTM+ Zero Pitch 0.22 0.26 �0.13 0.09

LTM+ First Pitch �0.2 �0.52 �0.58 �0.43

LTM+ Variable Pitch �0.29 �0.73 �0.67 �0.3

BOTH+ Zero Pitch �0.12 �0.66 �0.79 �0.48

BOTH+ First Pitch �0.08 �0.63 �0.67 �0.47

BOTH+ Variable Pitch �0.35 �0.81 �0.72 �0.37

LTM+ Zero Interval �0.19 �0.38 �0.44 �0.35

LTM+ First Interval �0.09 �0.6 �0.68 �0.42

LTM+ Variable Interval �0.35 �0.47 �0.76 �0.31

BOTH+ Zero Interval �0.35 �0.76 �0.91 �0.64*
BOTH+ First Interval �0.36 �0.62 �0.85 �0.61

BOTH+ Variable Interval �0.43 �0.63 �0.77 �0.39

Note. *Denotes p < .001 (Bonferroni corrected). Bold type indicates the highest correlation in each col-

umn. Italic type indicates the model with the highest overall correlation.
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The results suggest that listeners acquired a cognitive representation of statistical regu-

larities in the stimulus set that was distinct from their existing representation of statistical

structure in music. In terms of predictive coding (Clark, 2013; Friston, 2010), we suggest

that the prediction error between the listener’s top-down musical expectations and the

ongoing stimulus undermines the utility of pre-existing predictive models, stimulating the

construction of new predictive models through dynamic statistical learning within stimuli

(in the STM) and from the entire stimulus set (in the LTM+).
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