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system for generating a�ective
classical music
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This work introduces a new music generation system, called A�ectMachine-

Classical, that is capable of generating a�ective Classic music in real-time.

A�ectMachine was designed to be incorporated into biofeedback systems (such

as brain-computer-interfaces) to help users become aware of, and ultimately

mediate, their own dynamic a�ective states. That is, this system was developed

for music-based MedTech to support real-time emotion self-regulation in users.

We provide an overview of the rule-based, probabilistic system architecture,

describing the main aspects of the system and how they are novel. We then

present the results of a listener study that was conducted to validate the ability

of the system to reliably convey target emotions to listeners. The findings indicate

that A�ectMachine-Classical is very e�ective in communicating various levels of

Arousal (R2 = 0.96) to listeners, and is also quite convincing in terms of Valence

(R2 = 0.90). Future work will embed A�ectMachine-Classical into biofeedback

systems, to leverage the e�cacy of the a�ective music for emotional wellbeing in

listeners.

KEYWORDS

automatic music generation system, algorithmic composition, music MedTech, emotion

regulation, listener validation study, a�ective computing

1. Introduction

There is now overwhelming evidence that music supports health and well-being in

various ways, from motivating physical activity, to promoting mental health and fostering

social connection (MacDonald et al., 2013; Fancourt and Finn, 2019). Music is particularly

effective for supporting and mediating emotion states. Indeed, one of the primary reasons

people report listening to music is to change or enhance their emotions (Thayer et al.,

1994; Lonsdale and North, 2011; Saarikallio, 2012). Given the affordances of music to

support health and wellbeing, as well as advances in machine learning and computational

techniques, there has recently been a call to action to compose music with the use of

computational technologies for healthcare applications (Agres et al., 2021). Compared to the

use of human-composed, pre-recorded music, which spans many genres and emotions but

is fixed and difficult to adjust in real-time, generative music composition systems are able to

support real-time interactivity—they are able to flexibly manipulate musical features almost

instantaneously according to the listener’s current neural or physiological state, or given

their real-time input and preferences. These systems therefore show promise in delivering

personalized, cost-effective (and free of copyright), non-invasive, non-pharmaceutical

methods for helping individuals improve their emotion states. Given the global mental

health crisis (e.g, nearly 20% of adults in the USA live with a mental illness, or 52.9 million
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Americans in 20201), music medtech systems are projected to be

extremely valuable tools for supporting emotional wellness, and

mental health more broadly.

More generally, in an age where computational systems

are now being used extensively to generate impressive natural

language and visual art, such as the technologies available through

OpenAI,2 it is no surprise that there has been a recent surge of

interest in the development of automatic music generation systems

(AMGSs; also known as algorithmic composition systems). Like

human music composition and improvisation, AMGSs generally

aim to create harmonic, timbral, and rhythmic sequences in an

organized, musically-coherent fashion. This area, which sits at

the intersection of computing, music theory/composition, and

computational creativity, is relatively nascent, however, compared

to the computational creation of visual art. This work aims to

not only chip away at this gap, but offer a new automatic music

generation system—AffectMachine-Classical—that is capable of

producing controllable affective music. AffectMachine-Classical

offers an effective and flexible means of conveying emotions in

real-time, and the system has been developed to be embedded

into biofeedback systems such as brain-computer-interfaces (see for

example Ehrlich et al., 2019), making it a potentially powerful tool

for therapeutic applications such as emotion and mood regulation

in listeners, augmentation of physical activity during rehabilitation,

as well as commercial use cases such as soundtrack design and

providing silent videos with novel music free of copyright.

1.1. Related work

A review of automatic music generation is out of the scope

of this article (for a review and summary of the state-of-the-

art, see Herremans et al., 2017; Carnovalini and Rodà, 2020;

Dash and Agres, 2023), however we will briefly summarize

the main approaches to automatic music generation. Previous

approaches to developing music generation systems largely fall into

two categories: learning-based methods, and rule-based methods.

While there has been a recent trend toward learning-based

approaches, they present several challenges for affective music

generation. First, ecological (or realistic) music pieces typically

exhibit hierarchical, long-term structure, as well as polyphony. For

example, a melodic phrase may extend over multiple measures of

music, and involve several different instruments or voices. Further,

music typically has an overall form that allows for musical and

stylistic coherence throughout the piece. As such, a generative

model must be able to capture harmonic, rhythmic and temporal

structure, as well as the interdependency between voices (Dong

et al., 2018). Second, learning-based approaches require large music

datasets with emotion labels for training, a resource that is still

scarce in the community, although we note that acoustic models

that are able to link musical excerpts directly to natural language

descriptions are beginning to emerge (Huang et al., 2022), and

1 Statistics from the National Institute of Mental Health: https://www.nimh.

nih.gov/health/statistics/mental-illness.

2 https://openai.com/

may be a promising direction for future work. Style transfer

models have had success as an alternative to models capable

of generating novel affective music from scratch—for example,

Ramirez et al. (2015) used machine learning models to apply

appropriate expressive transformations on the timing and loudness

of pre-composed input musical pieces based on desired arousal

and valence. In addition, Williams et al. (2017) used affective

feature mappings to transform seed material generated by a neural

network trained on short musical excerpts, and Hu et al. (2020)

used convolutional neural networks to extract stylistic features

from therapeutic music pieces and incorporate them into user-

selected songs. Despite these promising applications, style transfer

models and similar approaches are subject to several important

limitations. For example, although leveraging pre-composed music

greatly simplifies the challenge of producing affective music,

the pre-existing music chosen is subject to copyright. Recent

progress in conditional music generation from text has resulted

in models that are able to generate high-fidelity music based on

natural language descriptions (Agostinelli et al., 2023), which may

potentially sidestep copyright issues. However, style transfermodels

and generative models are not yet able to support flexible and

continuous generation for real-time interactivity, which is essential

in biofeedback systems or any other systems meant to compose

music in real-time to mediate the user’s affective states.

In comparison to learning-based approaches, rule-based

approaches rely on hand-designed functions to map affective

signals to musical parameters. As such, they are able to sidestep the

challenges associated with learning-based approaches by building

in knowledge of how affective states map to musical parameters,

as well as typical expectations regarding harmonic, rhythmic, and

temporal structure. Additionally, the design of rule-based affective

music generation systems benefits from an extensive body of

theoretical and empirical work going back almost a century that

investigates how different aspects of musical structure contribute

to emotional expression (Gabrielsson and Lindström, 2010). For

example, the system described in Wallis et al. (2011) was primarily

informed by Gabrielsson and Lindström (2001), and generates

novel music algorithmically by mapping seven musical parameters

(e.g., note density, musical mode) to either valence or arousal in the

most continuous possible way. Even though several salient musical

parameters such as tempo, voice leading, and voice spacing, were

not mapped for simplicity, the systemwas sufficient for participants

to hear corresponding changes in the emotion of the music when

changes were applied to the valence and arousal parameter settings.

Similarly, the adaptive music engine described in Gungormusler

et al. (2015) manipulates musical parameters including tempo,

articulation, and timbre based on empirical validation of music-

emotion structural rules carried out by Livingstone and Brown

(2005). Most recently, Ehrlich et al. (2019) developed a system

that loops over a I-IV-V-I harmonic progression, and modifies

the musical mode, tempo, rhythmic roughness (a measure of the

amount of variation in note lengths within a measure), overall

pitch, and relative loudness of subsequent notes based on the

desired level of valence and arousal. Their listening study confirmed

a high correspondence between the system’s arousal and valence

settings and the emotions listeners perceived (Ehrlich et al.,

2019).
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Compared to existing rule-based systems, AffectMachine is

more sophisticated, by taking into account traditional features,

such as tempo, rhythmic roughness/note density, mode, etc., as

well as additional features such as voice leading and a fine-

grained mapping between valence/arousal and musical features

such as the chord progression. In addition, because our system is

capable of producing music in real-time based on given arousal

and valence, it has a flexibility not exhibited by most other music

generation systems.

1.2. Emotion perception in music

Music listening is often a rich emotional and cognitive

experience (Altenmüller and Schlaug, 2012), and numerous studies

have explored the relationship between music and emotional

expression. For example empirical studies have been carried out

to better understand both the emotions that can be expressed

through music (e.g., Gabrielsson and Juslin, 2003), as well as the

musical factors that contribute to perceived emotional expression

(e.g., Gabrielsson and Lindström, 2010). Research has shown that

various musical cues, such as tempo, mode, dynamics, pitch range,

rhythm, and articulation, can influence the perceived emotion in

music (Gabrielsson and Juslin, 2003; Schubert, 2004; Juslin and

Västfjäll, 2008; Juslin and Sloboda, 2013). For example, studies

have found that fast tempos are associated with positive emotions

such as joy and excitement, while slow tempos are associated with

negative emotions such as sadness and melancholy (Juslin and

Laukka, 2003). Similarly, major modes are generally associated with

positive emotions, while minor modes are associated with negative

emotions (Juslin and Laukka, 2003), although this can depend

on musical enculturation (Swaminathan and Schellenberg, 2015).

Other musical cues, such as dynamics/loudness and pitch range,

can also influence the perceived emotion in music. For instance,

loudness has been found to correlate strongly with perceived

and induced arousal, while high pitch ranges are associated with

excitement and low pitch ranges with sadness (Balkwill and

Thompson, 1999; Swaminathan and Schellenberg, 2015). Overall,

these findings suggest that musical features play a crucial role in

influencing perceived emotion in music. The connection between

musical features and emotion has also led to a surge of research

in Music Information retrieval (MIR) which aims to identify the

high-level emotions of music from its low-level features (see, for

example, Yang et al., 2018), an area often referred to as music

emotion recognition.

Studies have found that listeners tend to exhibit agreement

in their judgment of the general emotions expressed by a

piece of music, and that these judgments are only marginally

affected by demographic factors such as musical training, age, and

gender (Juslin and Laukka, 2004), although differences in emotion

perception have been emerging in recent work examining the

impact of factors such as age and musical training (Cohrdes et al.,

2020; Koh et al., 2023). In addition, music is often unable to reliably

communicate finely differentiated emotions (Juslin, 1997). Sloboda

(2004) offers an explanation for this phenomenon, suggesting that

music is to a large extent abstract and ambiguous, and while it

may be able to suggest varying levels of energy or resemble certain

gestures and actions, these emotional contours are often fleshed out

in a subjective manner.

Other recent studies have explored the neural mechanisms

underlying emotional responses to music, with a particular focus

on the role of the brain’s reward system. For example, Salimpoor

et al. (2015) describes how listening to music activates the

brain’s reward system, leading to the release of dopamine and

other neurotransmitters associated with pleasure and reward. This

suggests that our emotional responses to music are not simply

a matter of subjective experience, but are also rooted in the

underlying biology of the brain, e.g., dopamine is released in

concert with prediction mechanisms in the brain during music

listening (Huron, 2008; Salimpoor et al., 2015; Ferreri et al., 2019).

Overall, these and other recent studies continue to deepen our

understanding of the complex relationship between music and

emotion, and suggest that systems able to flexibly manipulate

musical features have great potential for emotion-focused well-

being applications such as affective music generation systems.

Taken together, the literature suggests that (i) to a large extent,

music can be systematically modified to express desired emotions,

and that (ii) the effectiveness of affective music generation systems

should be fairly robust across listeners.

1.3. A�ectMachine-Classical

The current music generation system, AffectMachine-Classical,

uses a probabilistic, rule-based approach to generate affective

classical music in real time. The systemwas developed with the help

of a classically-trained composer finishing his studies at a major

Conservatory of Music, and the system’s generated music generally

aims to follow the stylistic conventions of Western tonal classical

music3.

Various approaches have been used to measure and describe

the affective qualities of musical stimuli, ranging from widely used

measures such as Russell (1980)’s circumplexmodel and the Geneva

Emotional Music Scale (GEMS; Zentner et al., 2008) to bespoke

methods developed for specific studies (e.g., Costa et al., 2000;

Lindström, 2006). Following much of the existing work on affective

music systems (e.g., Wallis et al., 2011; Ehrlich et al., 2019), we

opted to represent emotion in AffectMachine using the circumplex

model, in which emotions can be understood as points within

a two-dimensional space. The first dimension is arousal, which

captures the intensity, energy, or “activation” of the emotion, while

the second is valence, which captures the degree of pleasantness.

For example, excitement is associated with high arousal and high

valence, while contentment would be associated with low arousal

and high valence. The circumplex model has several advantages

over alternative measures of emotion. Firstly, to provide accurate

and fine-grained feedback to a user about his or her emotional state,

music generated by AffectMachine should ideally vary smoothly

over the entire space of emotions, making continuous models

of emotion such as the circumplex model a natural choice over

3 A separate version of A�ectMachine is being developed and tested in a

popular-music genre, to a�ord listeners some variety and choice based on

their musical preferences.
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categorical models of emotion such as GEMS. Secondly, allowing

musical features to change gradually over time could help lend

the music a more natural sound. Finally, the generalizability of

the circumplex model also enables us to make use of previous

research which may have used less common measures of emotion,

by interpreting their results in terms of arousal and valence.

AffectMachine provides a model that is able to fluidly generate

affective music in real time, either based on manually-input or

predetermined arousal and valence values (e.g., as a sort of affective

playlist for emotion mediation, or trajectory through emotion

space), or based on the real-time feedback or physiological state of

the user (e.g., EEG activity captured from the user and mapped to

arousal and valence). In this way, AffectMachine offers a flexible yet

powerful way to sonify (real-time) emotion states, and to influence

the emotion states of the listener. The systemmay be used for health

and wellness applications, such as generating affective playlists for

emotion mediation. Further, AffectMachine may also be integrated

into Brain-Computer Interface (BCIs) devices, or other systems

capable of providing biofeedback, to assist the user in achieving

a desired emotion state through neuro/biofeedback and affective

music listening.

The main contributions of this work are: (1) the design of

a novel rule-based affective music generation system to compose

non-monotonic classical music, and (2) validation of the proposed

system for expressing different emotions through a listener study.

In the next section of this paper, we describe the features of

AffectMachine-Classical (Section 2). We then describe the listener

study and discuss the findings and implications of our results

(Section 3), before providing our general conclusions and suggested

future directions (Section 4).

2. A�ectMachine-Classical system
description

In this section, we describe the parameters and design of our

novel affective music generation system, AffectMachine-Classical,

which produces affective music in a classical style. AffectMachine

was developed to be embedded in a BCI or neurofeedback system,

to both generate emotion-inducing music in real-time, and to allow

for neural or physiological signals (such as EEG) to drive the music

generation system. That is, the systemwas developed to both induce

emotion in listeners, and provide users with real-time feedback

on their current emotional state, in which the generated music is

a reflection (or sonification) of the listeners’ emotion state (when

AffectMachine is embedded in a BCI or neurofeedback system). In

the present paper, we remove AffectMachine from any embedded,

interactive contexts (e.g., BCI), and examine the standalone

AffectMachine, focusing on the efficacy of AffectMachine for

generating music that conveys the intended emotion.

The automatic music generation system was developed in

Python, and takes a sequence of arousal and valence states as input

and encodes a corresponding sequence of harmonic, rhythmic, and

timbral parameters in the form of a MIDI event stream as output.

The MIDI event stream is then sent to a digital audio workstation

(DAW) over virtual MIDI buses to be translated into sound. For the

present version of AffectMachine, we use the Ableton DAW for its

wide selection of instruments and its ability to support live multi-

track recording. Arousal and valence are continuous values within

the range [0, 1] that can either be sampled from sensors (such as

EEG) or manually provided. All musical parameters are updated

each bar in accordance with the current arousal and valence values.

Developing a rule-based affective music generation system

requires first identifying a set of musical parameters and affective

states, then designing functions that map parameter values to

target states. For this reason, the harmonic, rhythmic, and timbral

parameters were selected based on previous work establishing their

influence on musical expression of emotions, and developed in

collaboration with conservatory students formally trained in music

composition.

In the subsections below, we present the details of the

AffectMachine-Classical system.

2.1. Harmonic parameters

Previous rule-based music generation systems have controlled

themode parameter by choosing a fixed harmonic progression (e.g.,

I-IV-V-I) and in a few cases, by varying the musical mode from

which the chords are drawn (e.g., each musical mode was mapped

to a certain level of valence), with Lydian typically identified as the

mode that expresses the highest valence, and Locrian or Phrygian

as the mode that expresses the lowest valence, as per Schmuckler

(1989). A simpler, and much more common, version of this logic is

to switch between the major and minor modes.

In the AMG system, we introduce a completely novel way

of controlling mode by using a bespoke probabilistic chord

progression matrix inspired by the theme and variation form

found in (human-composed) classical music. The music loops

through an 8-bar theme with fixed chord functions for each

bar, but the specific chords used, as well as their probabilities,

are determined by the target level of valence desired. To our

knowledge, this approach has never before been implemented

in a computational music generation system. The chord set

available for each level of valence was based on previous empirical

work, as well as the musical insights from conservatory students

formally trained in music composition. Previous empirical work

has established that valence tends to be positively related to the

major mode, and negatively related to the presence of dissonance

(e.g., diminished and augmented intervals; Costa et al., 2004;

Costa and Nese, 2020). Generally, the chords progressions in

our system exhibit greater dissonance with higher probability

as valence decreases. Arousal had no influence on the chord

progression selected.

Unlike previous systems which are constrained to a specific

harmonic progression, the AMG system is extremely flexible—

the only constraint being that the music has to progress through

the 8-bar theme. (Note that the majority of human-composed

music also adheres to a repeating X-bar structure). This novel

approach is therefore beneficial by allowing a greater range of

musical possibilities (and “interestingness” of the composition).

At the same time, the music is able to achieve greater coherence

of musical structure than what is commonly found in machine

learning-based approaches by using chord substitutions in an 8-bar
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theme to express the desired level of valence, and by ending each

iteration of the theme with a cadence.

To craft the 8-bar theme, the valence range was divided into

10 regions, with one probabilistic chord progression composed for

each region to match the intended level of valence. For example,

at higher levels of valence, the chord progressions are composed

in the major mode as it is typically associated with expressions of

positive valence. As valence decreases, the likelihood of chords with

greater tension or dissonance (such as those with diminished or

minor intervals) increases. For a given bar (e.g., 1–8) and level of

valence (e.g., 0–1), there are a set of possible chords, each with a

particular probability of occurrence from 0.1 to 0.8. At any given

bar and valence level, there are typically multiple chords (between

one and five) to choose from.

2.2. Pitch characteristics of voices

2.2.1. Voice leading
Voice leading refers to the art of creating perceptually

independent musical lines (e.g., tenor line, soprano line, etc.) that

combine to form a coherent piece (Huron, 2001), and is a steadfast

component of the majority of human-composed polyphonic music.

Despite the importance of voice-leading, automatic generation of

polyphonic music with multiple voices or tracks is a challenge that

research is only just beginning to address, primarily with learning-

based generative methods (e.g., Dong et al., 2018), and many of

these systems either fail to address voice leading altogether or use

highly simplified versions of voice leading.

In the AffectMachine system, we implement a novel rule-based

music generation system that draws on both traditional rules of

voice leading as well as heuristics used by human musicians, to

create pieces that exhibit perceptually independent musical lines

with nontrivial complexity and variability. (Note that in our system,

we utilize and refer to voices, not in the strict sense of counterpoint,

but similar to the use of voices in a string quartet, where one

voice or instrument is capable of playing a chord.) By mapping

these rules to differing levels of arousal and valence, we also

provide more cues for listeners to identify the emotion being

conveyed by the music, and enable finer-grained control over the

mapping between affective states and musical parameters. This is

an extremely important aspect and benefit of our approach.

AffectMachine-Classical was developed to generate music with

four parts or voices. The four voices/algorithms we employ were

selected to fill out the acoustic space from low bass frequencies

to the higher soprano range. While the instruments do not

map strictly to the counterpoint definition of voices (e.g., with

independent bass, tenor, alto, and soprano lines), they do span

the frequency spectrum from low to high, and work together to

convey a cohesive melody and harmony. The bass voice is carried

by the string section, and always plays the root note of the current

chord. The principal melody is played by the soprano voice, which

is carried by the clarinet and doubled at higher valence settings

by the marimba. Both inner voices are carried by the piano, with

the tenor voice playing a full chord voicing in the middle register,

and the alto voice providing harmonic accompaniment by means

of single notes adhering to voice leading principles (the details are

described below). Instrumentation is explained in more detail in

the section on timbral parameters.

While there are numerous principles that govern voice leading,

or the creation of perceptually independent parts (Huron, 2001),

we select several straightforward rules that provide sufficient

melodic diversity while minimizing unpleasant or artificial-

sounding melodic lines. The three parts that are determined

through voice leading logic are the tenor, alto, and soprano voices.

For the principal melody, our primary goal was to avoid unexpected

dissonance. Hence, the note sequence is a randomly selected

sequence of chord tones. For the tenor voice, which plays the full

chord voicing of the chord progression, we follow the heuristic

outlined in Wallis et al. (2011)—that pianists tend to voice new

chords in a manner that is as similar as possible to the previous

chord, in terms of interval and placement on the keyboard. We

calculate dissimilarity between two notesets (N,N′) as per Equation

(1) and select the least dissimilar chord voicing to be played the first

inner voice.

dissimiliarity =
∑

i

∑

j

| Ni − N′
j | ∀i ∈ N, ∀j ∈ N′ (1)

The alto voice is monophonic, playing one note at a time

according to a step motion rule, where the initial note is a randomly

selected chord tone. This rule states that if the next note in the

melody is of a different pitch, the pitch motion of the alto voice

should be by diatonic step (e.g., move up or down the diatonic

scale). These rules are encoded in the form of transition matrices.

There are four possible states: −1, indicating a diatonic step down

the scale; 1, indicating a diatonic step up the scale; 0, indicating no

pitch motion; and CT, indicating a jump to a randomly selected

chord tone (CT). The arousal range was divided into two equal

regions, with one matrix composed for each region to generate

appropriate melodies for each level of arousal. The transition

matrices were developed such that at higher levels of arousal,

melodies are more likely to consist of scale patterns, mitigating

the risk of the music being too dissonant or unpleasant due to the

increased tempo and note density. Note that our system does not

directly avoid parallel fifths/octaves (due to the complexity of the

system and the presence of many features), but because this is a

probabilistic system, movements of fifths in multiple voices at the

same time are relatively rare.

2.2.2. Pitch register
Research in the psychology of music has associated pitch height

and pitch register with emotional expression for almost a century

(Hevner, 1937); yet pitch height is often not explicitly incorporated

into automatic music generation systems. Higher pitches generally

tend to be associated with positively-valenced emotions such as

excitement and serenity (Collier and Hubbard, 1998), while lower

pitches tend to be associated with negatively-valenced emotions

such as sadness.

In AffectMachine-Classical, the pitch register of the lowest

voice is consistent (at C3). For the remaining voices, the pitch

register can vary within a permissible range determined by the

current valence level.
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To implement changes in pitch register, we again divided the

valence range into ten equally spaced regions and tuned the lower

and upper bounds of allowable pitches by ear. Both the lower and

upper bounds of the range of permissible pitches increase gradually

as valence increases. The range of permissible pitches starts at

[C1, C5] in the lowest valence region, and gradually moves to [G3,

C6] in the highest valence region.

2.3. Time and rhythm parameters

2.3.1. Rhythm
In most automatic generation approaches, the rhythmic

content of the music is either fixed (e.g., a repeating pattern or a

pre-composed rhythm template is used), or the temporal duration

of notes (the rhythmic content) is based on a machine-learning

generative process that affords little musical cohesion. This tends

to either make the music sound extremely repetitive, or rather

incoherent and unpleasant for most listeners.

To surmount this issue, the different voices/parts/tracks in

AffectMachine-Classical use different rhythmic logic, e.g., one voice

uses probabilistic rhythms while another uses composed rhythms.

In this way, our new approach finds a nice and aesthetically-

pleasant balance between composed and probabilistic elements.

As mentioned above, AffectMachine-Classical was developed

to generate music using four parts or voices. The bass voice

(string section) and first tenor voice (piano) employ a fixed

rhythmic pattern—they are both played on the first beat of

each bar. For the soprano voice (clarinet and marimba), we

divided the arousal range into three regions: low (Arousal < 0.4),

moderate (0.4 ≥ Arousal < 0.75) and high (Arousal > 0.75).

Much like the implementation of mode, for a given bar (e.g., 1–

8) and arousal region, there is a set of two possible rhythmic

patterns or “licks” with equal probability of occurrence. The

rhythmic pattern is represented in code as a list of binary values

indicating whether each beat (subdivision) is associated with a

note activation.

Finally, for the alto voice (piano), we incorporate rhythmic

roughness, which is a measure of how irregular the rhythm of a

piece of music is. Music with smooth, regular rhythms are typically

perceived as higher in valence. In AffectMachine-Classical, we use

note density as a proxy for rhythmic roughness (Wallis et al.,

2011). As arousal increases, roughness decreases, and note density

increases. When roughness is 0, each bar is populated with eight

notes of equal length. However, this often results in overly dense-

sounding output, because tempo is also high at higher levels of

arousal. Hence, we limit the lowest roughness to 0.3.

2.3.2. Tempo
Tempo, or beats per minute, determines how quickly the notes

of each bar are played. Alternatively, tempo can be thought of as

a measure of note duration—the faster the tempo, the shorter the

note duration. In AffectMachine-Classical, tempo is determined by

a simple linear relationship with arousal, and ranges from 60 bpm

at Arousal= 0–200 bpm at Arousal= 1.

2.4. Timbral and loudness parameters

Two parameters contributed to variations in timbre: (i) the

instrumentation of AffectMachine-Classical, and (ii) the velocity of

notes, which refers to the force with which a note is played.

2.4.1. Velocity range
Similar to the algorithmic composition system developed by

Williams et al. (2017), we mapped coordinates with higher arousal

to brighter and harder timbres that were created by increasing

MIDI key velocity. In MIDI, velocity is measured on a scale from 0

to 127. In our system, the range of permissible MIDI key velocities

is [40, 70] at Arousal = 0, and the lower and upper bounds of

the range increase linearly with arousal to [85, 115] at Arousal =

1. A uniform distribution over the range is used to determine the

velocity for each bar.

Velocity = unif 40+ aro ∗ 45, 70+ aro ∗ 45 (2)

2.4.2. Velocity variation
Patterns of velocity variation have affective consequences.

For example, research has found that large changes in velocity

(loudness) suggest fear, while small variations convey happiness

and pleasantness (Scherer and Oshinsky, 1977; Krumhansl, 1997;

Juslin and Laukka, 2001; Gabrielsson and Lindström, 2010).

Further, rapid changes in velocity may be associated with

playfulness or fear (Krumhansl, 1997).

In our experimentation with the system, we found that frequent

changes in velocity tend to result in unpleasantly disjointed,

artificial-sounding music, and we therefore attempt to limit

large, rapid (e.g., unexpected-sounding) variations in velocity.

Furthermore, changes in velocity become more frequent as tempo

(which is linearly related to arousal, as per Section 2.3.2) increases.

Therefore, to strike a balance between enabling sufficient variation

in velocity, and incorporating those variations in as natural a way

as possible, we limited the maximum change in velocity allowable

within each bar. The variation in velocity is dependent on the

arousal level and bar of the progression. Specifically, we set an

overall minimum and maximum loudness level, and the allowed

deviation becomes smaller as arousal decreases. The magnitude of

variation in velocity is random, within the allowable range (which

is set for each bar), and there are no changes in velocity within

each bar.

2.4.3. Instrumentation
Four virtual instruments were employed in the system (piano,

a string section, clarinet, and marimba), and used to convey a

classical musical style. As mentioned previously, the lowest voice is

conveyed by the string section, while both inner voices are carried

by the piano. The principal melody is placed in the uppermost

voice, which is played by the clarinet. The marimba is used to

double over the clarinet at high levels of valence (Valence ≥

0.8) due to its cheerful-sounding timbre (and because, during

experimentation with the system, marimba was found to nicely
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complement the timbre of the clarinet, which could sound slightly

shrill at higher pitch heights). After all other harmonic, rhythmic,

and timbral parameters have been determined, instrument samples

in the DAW (Ableton) are used to generate the final output audio.

3. A�ectMachine-Classical listener
study

3.1. Method

A listening study was conducted in order to validate the efficacy

of AffectMachine-Classical for generating affective music. We first

used our system to generate brief musical examples from different

points around the arousal-valence space of the circumplex model

(Russell, 1980). Listeners then provided arousal and valence ratings

for each of these excerpts to examine whether the target emotion

(in terms of arousal and valence) was indeed perceived as intended

by listeners.

3.1.1. Participants
The listening study was conducted with 26 healthy participants

(average age = 22 yrs, SD = 4 yrs) including 11 male and 15

female participants. Twelve of the 26 participants reported having

prior musical training. All the participants were given verbal and

written instructions about the listening study prior to providing

their written consent. The study was approved by the Institutional

Review Board (IRB) of the National University of Singapore (NUS).

3.1.2. Stimuli
AffectMachine-Classical was designed to compose affective

music that can span the entire valence-arousal plane. For the

validation study, musical stimuli were generated from 13 different

points around the valence and arousal plane. These were meant

to represent different emotional states around the space, and

covered the corners, middle of each quadrant, and the neutral

middle point of the space. The points are: {valence, arousal} =

[{0,0}; {0,0.5}; {0,1}; {0.25;0.25}; {0.25,0.75}; {0.5,0}; {0.5,0.5}; {0.5,1};

{0.75,0.25}; {0.75,0.75}; {1,0}; {1,0.5}; {1,1}]. There is a precedent in

the literature for selecting these points in the arousal-valence plane

for the validation of amusic generation system (Ehrlich et al., 2019).

To account for the probabilistic nature of the system, three

different musical stimuli were generated from each of the thirteen

points, resulting in a total of 39 musical excerpts. This mitigates

the risk that artifacts in any particular stimulus might bias listener

ratings, for more robust results. The average duration of the music

stimuli is 23.6 s. The stimuli were composed based on either an

8- or 16-bar progression to allow the music to reach a cadence.

Note that because AffectMachine was designed to generate music

continuously and flexibly based on the listener’s physiological

state or real-time arousal and valence values, the music does not

always reach a full cadence at the end of an 8-bar sequence (e.g.,

sometimes the tonic/cadence is only reached at the beginning of

the subsequent 8-bar sequence). In the present case, we are not

testing the ability of the music to have well-formed cadences per se,

but to convey a target emotion. That is, the examples do not

necessarily end with a musical cadence; rather, they are excerpts

from what could be an infinitely-long musical creation. Therefore,

while generating stimuli with a fixed duration is possible, this

often results in stimuli that end abruptly, which might influence a

listener’s emotional response to the stimuli. Sixteen bars were used

for stimuli with a fast tempo (e.g., high arousal excerpts), as 8 bars

produced too brief a time duration for these excerpts. All musical

stimuli were presented to each participant in randomized order to

avoid order effects across participants. The music stimuli used in

this validation study are available online at: https://katagres.com/

AffectMachineClassical_stimuli.

3.1.3. Experimental protocol
The experiment was conducted one participant at a time

in a quiet room with minimal auditory and visual distractions.

The experimenter first provided verbal and written instructions

about the experiment, and then the participant provided written,

informed consent to participate in the study. During the listening

study, the participant sat in front of a computer and listened to the

music stimuli over headphones, with the sound level adjusted to a

comfortable listening volume.

Before the listening task, the participant was asked to complete

a demographic questionnaire which included questions about

his/her age, prior musical training, ethnicity, etc. Subsequently, the

participant rated his/her current emotional state.

The music listening study began with two practice trials,

followed by the 39 experimental trials in randomized order. After

listening to each stimulus, the participant was asked to indicate the

perceived emotion of the stimulus (that is, the emotions they felt

that the music conveyed) on a visual 9-point scale known as the

Self-Assessment Manikin (SAM; Bradley and Lang, 1994). These

ratings were collected for both arousal and valence. Briefly, valence

refers to the degree of the pleasantness of the emotion, while arousal

refers to the activation or energy level of the emotion. The SAM

scale ranged from “very unpleasant” (1) to “extremely pleasant”

(9) for valence, and from “calm” (1) to “excited” (9) for arousal.

Participants were allowed to take as long as they required to make

these ratings, but were only permitted to listen to each musical

stimulus once. The total duration of the experiment was ∼40 min,

and participants were compensated with $6 SGD (equivalent to

$4.50 USD) for their time.

3.2. Results and discussion

In order to evaluate the efficacy of the music generation system,

we analyzed the user ratings collected during the music listening

study. We aimed to investigate (1) whether the music generated by

the system is able to express the desired level of valence and arousal

to the listeners, and (2) whether perceived valence and arousal are

dependent on the listeners’ prior musical training/knowledge. In

this regard, we present our results in two subsections: (1) arousal

and valence ratings, and (2) the impact of prior musical training on

emotion ratings. We do not consider demographic factors such as

age and ethnicity for further analysis due to the limited sample size.
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As is commonly found in listener studies of emotion in music,

we observed that the average valence and arousal ratings varied

across listeners. This variance is often attributed to individual

differences in musical preferences and training, and the listeners’

demographic and cultural profile (Koh et al., 2023). In order

to mitigate the differences across listeners, we normalized the

perceptual ratings from each user (see Equations 3 and 4 below).

Here, MaxValence refers to the maximum possible valence rating

(i.e., 9), and Minvalence refers to the minimum possible valence

rating (i.e., 1). The same Max and Min values apply to Arousal.

The normalized valence and normalized arousal ratings, ranging

between 0 and 1, are used for further analysis. In the remainder of

the article, the normalized valence and normalized arousal ratings

will be referred to as valence and arousal ratings, respectively.

NormalizedValence =
RatedValence

(MaxValence −MinValence)
(3)

NormalizedArousal =
RatedArousal

(MaxArousal −MinArousal)
(4)

3.2.1. Arousal and valence ratings
To investigate whether AffectMachine is able to accurately

express the intended emotion through music, we compared

participants’ averaged (normalized) emotion ratings for themusical

stimuli with the valence or arousal parameter settings used during

the music generation process. For example, the averaged valence

ratings for all stimuli generated with the parameter settings

{valence, arousal} = [{0,0}; {0,0.5}; {0,1}] were used to evaluate the

system’s performance when valence is set to zero. The bar graphs

depicting the averaged ratings (along with standard errors) are

presented in Figure 1. As expected, a strong increasing trend is seen

for both the average valence and arousal ratings with respect to

their corresponding parameter settings. With regard to the valence

ratings, we observe themajority of ratings to fall between the< 0.25

and > 0.75 parameter settings. It is common to see a higher

density of responses in the middle of psychometric rating scales

(e.g., with both ends of the scale receiving proportionally fewer

responses; Leung, 2011). This could also indicate that the extremes

of the valence parameter values are less distinguishable by listeners.

On the other hand, a better correspondence is observed between

average arousal ratings and the respective parameter values at all

levels of arousal.

To test the relationship between average valence and arousal

user ratings and parameter settings, we performed linear regression

analyses (illustrated in Figure 1). The coefficient of determination is

R2 = 0.90 (F = 27, p < 0.05) for valence, and R2 = 0.96 (F =

74, p < 0.01) for arousal, which confirms that both parameters

are very effective in conveying their intended dimension of

emotion. The results also show a stronger linear relationship for

arousal (between average arousal ratings and parameter settings)

in comparison to valence. This finding, in which arousal is more

reliably expressed via music than valence, has previously been

found in the literature (Wallis et al., 2011; Ehrlich et al., 2019).

These results show that the music generated by AffectMachine-

Classical generally conveys the intended levels of valence and

arousal to listeners.

Next, we investigate whether the perception of valence is

influenced by changes in the arousal parameter setting, and

conversely whether the perception of arousal is influenced by

changes in the valence parameter setting. To do so, we analyse

the dependence of average emotion ratings on both the valence

and arousal parameter settings together. Figure 2 visualizes this

dependence by presenting the interpolated average valence (left)

and arousal ratings (right) as a function of the emotion parameter

settings. The stars in the figure represent the 13 points around

the valence and arousal plane used to generate musical stimuli.

As can be seen in the figure on the left, the perceived valence is

lower than the actual valence parameter setting (for V > 0.7)

for excerpts expressing arousal values < 0.4. That is, excerpts

generated to express high valence convey only moderate valence

when the arousal setting is low. This may be due in part to

the effect of a slower tempo. Ratings at low valence settings are,

however, in accordance with their respective parameter values.

In contrast, we observe uniform correspondence between the

arousal parameter values and arousal ratings regardless of the

valence parameter setting. Our study replicates a phenomenon

that has been previously described in Wallis et al. (2011)—the

authors found asymmetrical “crossover” effects between arousal

and valence such that while perceived valence correlates with

intended arousal, perceived arousal does not correlate significantly

with intended valence.

To investigate these linear dependencies, we performed

multiple linear regression between the valence and arousal

parameter settings (independent variables) and average

valence/arousal rating (dependent variable). The results indicate

that perceived valence ratings are significantly influenced by both

the valence (F = 63, p < 0.001) and arousal (F = 11, p < 0.01)

parameter settings, which is in line with what we observed in

Figure 2. Perceived arousal ratings, however, only show a significant

dependence on the arousal settings (F = 153, p < 0.001). This

observation is in line with findings from the literature which

show that modeling the arousal component of emotion is more

straightforward than the valence component (Yang et al., 2008;

Wallis et al., 2011). Nevertheless, the obtained R2 values are high

R2 > 0.85 for both average valence and arousal ratings. This

confirms that irrespective of the emotion component, the majority

of variability in average ratings during multiple regression analysis

is explained by the valence and arousal settings values.

In summary, the listener study validates the ability of

AffectMachine-Classical to generate music that expresses desired

levels of emotion, measured in terms of arousal and valence.

This confirms that the system has the potential to be deployed

in applications that benefit from affective music—for example,

the AffectMachine-Classical could be integrated with biofeedback

systems wherein the music driven by the users’ neural (or other

physiological) signals can be used to reflect their emotional state.

This direction is promising for developing more sophisticated

emotion mediation systems with applications in healthcare (Agres

et al., 2021). In the next section, we analyse the impact of

participants’ prior musical training on emotion ratings.
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FIGURE 1

(A) Linear regression between parameter settings and average valence ratings. (B) Linear regression between parameter settings and average arousal

ratings. Error bars display standard error.

FIGURE 2

Average (interpolated) valence and arousal ratings as a function of the valence and arousal parameters. Vertical color bars represent the colors

corresponding to di�erent values of normalized average ratings over the range of 0.1–0.9.

3.2.2. Impact of prior musical training on emotion
ratings

In this section, we present a comparison of user

ratings provided by participants with and without prior

musical training. Participants indicated whether they had

prior musical training in the demographic questionnaire

they completed. Based on participants’ response to the

question “Do you currently play an instrument (including

voice)?” they were divided into two groups—the musical

training (MT) group and no musical training (NMT)

group. The MT and NMT groups have 12 and 14

participants, respectively.

Figure 3 presents the average emotion ratings corresponding

to different levels of emotion parameter values for both

the MT and NMT groups. As illustrated in the graphs, a

stronger correspondence between the average emotion ratings and

parameter-setting values is observed for arousal in comparison

to valence, for both groups. As noted above, the average valence

ratings demonstrate a saturation effect for lower (< 0.25) and

higher (> 0.75) parameter-setting values for both the MT and

NMT groups. Figure 3 also shows the linear regression fit for all the

cases. The R2 values reflecting the relationship between emotion

ratings and parameter settings are marginally higher for the MT

group (R2 for valence is 0.91, F = 33, p = 0.01; R2 for arousal

is 0.97, F = 111, p < 0.01) as compared with the NMT group

(R2 for valence is 0.88, F = 22, p < 0.05; R2 for arousal is

0.94, F = 51, p<0.01), for both valence and arousal. To compare

whether the differences between these linear regression models

were significant, we calculated the Akaike Information Criterion

(AIC) for both the MT group (AIC = −10.65 for valence and

AIC = −14.87 for arousal) and NMT group (AIC = −12.20

for valence and AIC = −11.74 for arousal). The statistics show

that there is only a marginal difference (in perceived emotion

ratings based on the system’s emotion settings) between the MT

and NMT groups. Although musical expertise has been found

to influence the perception of emotion in affective music in
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FIGURE 3

(A) Average valence rating and linear regression for MT group. (B) Average arousal rating and linear regression for MT group. (C) Average valence

rating and linear regression for NMT group. (D) Average arousal rating and linear regression for NMT group. Error bars depict standard error.

some cases (e.g., see Di Mauro et al., 2018), we find here that

both musicians and non-musicians reliably appraise the music

created by AffectMachine-Classical as the emotion intended by

the system. We note, however, that given the limited sample size

in our study, it is difficult to generalize the effects of musical

training, and a larger sample size could yield a significant difference

between the two listener groups. Nevertheless, we observe that

regardless of musical training, all of the participants were able

to reliably perceive the emotional expression in the music, which

is evident from the high R2 values observed (> 0.85) for both

listener groups.

In addition, we also performed a multiple linear regression

to examine the effect of parameter settings in both emotion

dimensions on individual perceived emotion ratings. We obtained

high R2 values (R2 > 0.8) for all the scenarios, i.e., for both

emotion dimensions for both groups. Furthermore, we observed

that perceived valence is significantly influenced by both valence

(F = 89, p < 0.001 for MT, and F = 38, p < 0.001 for NMT)

and arousal (F = 5.8, p < 0.05 for MT, and F = 15, p < 0.01 for

NMT) parameter settings for both MT and NMT groups. However,

perceived arousal ratings are only influenced by the arousal settings

(F = 216, p < 0.001 for MT and F = 110, p < 0.001 for

NMT), and not valence settings, in both groups. These findings

are similar to what we observed for all the participants without

any grouping.

4. General discussion

In this paper, we present a new computational system

for generating affective classical music called AffectMachine-

Classical. The system provides a probabilistic, rule-based

algorithm for flexibly generating affective music in real-time.

AffectMachine’s behavior essentially resembles semi-structured

musical improvisation, not dissimilar to the approach utilized

by Baroque composers/musicians (Moersch, 2009), or how

human jazz performers might follow the basic melody outlined

by a lead sheet while coming up with reharmonizations, chord

voicings, and appropriate accompaniments, on the fly, to help

convey the emotions they are aiming to express (Johnson-Laird,

2002; McPherson et al., 2014). To our knowledge, ours is the

first affective music generation system to adopt this approach.

A key advantage of this method is that the music generated by

the system achieves a balance between musical coherence and

self-similarity, which may be valuable in research and other

contexts that require lengthier pieces of music. Although the
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issue of artificially generating music that is capable of exhibiting

long-term structure has been described as “notoriously difficult”

(Carnovalini and Rodà, 2020) and cited as one of the grand

challenges for automatic music generation (Herremans et al.,

2017; Briot and Pachet, 2020), our system addresses this issue

in part by providing a structural frame by means of an 8-bar

form in which the music is generated. Melodic coherence is

maintained due to the constraints enforced by the algorithms

used to generate melodic patterns, and harmonic coherence

is achieved through the use of a chord matrix based on the

8-bar form.

AffectMachine was developed to be embedded into real-

time biofeedback systems, such as music-based Brain-Computer

Interfaces (BCIs), to leverage neurofeedback and adaptive, affective

music generation to help the listener achieve a target emotion

state. The listener study reported here was conducted to validate

the efficacy of the system for generating affective music. Indeed,

regardless of musical experience, listeners perceived the target

emotion of the musical excerpts (in terms of arousal and valence),

as intended by the system.

The results of the listener study indicate a strong relationship

between the arousal parameter setting and average arousal

ratings (R2 = 0.96), as well as the valence setting and

average valence ratings (R2 = 0.90). The correlation between

target and perceived emotion was more tempered for valence

compared to arousal, as previously found in the literature

(e.g., Wallis et al., 2011; Ehrlich et al., 2019). From the

results of our listener study, it is evident that AffectMachine

is capable of expressing the desired emotional information,

and thus holds the potential to be used as an affect guide

for mediating/regulating the emotion states of listeners. We

would like to emphasize that despite the differences in listeners’

prior musical training, individual and cultural preferences, and

demographic profile, there was strong evidence suggesting

that the system’s target emotions were indeed perceived

as intended across listeners, which makes Affect Machine-

Classical a very promising tool for creating music with reliable

emotion perception.

In terms of future directions, as discussed above, AffectMachine

will be embedded into biofeedback systems, such as a Brain-

Computer-Interface (similar to Ehrlich et al., 2019), to support

emotion self-regulation in listeners. Further, our system may be

used for wellness applications such as generating affective music

“playlists” for emotion mediation. That is, using the flexible music

generation system, a user may pre-define an “emotion trajectory”

(e.g., a path through emotion space, such as the two-dimensional

Valence-Arousal space) to define the emotional qualities of their

music over the duration of listening. For example, if a user desires

10 min of music to help him move from a depressed emotion

state to a happy emotion state, he may indicate an emotion

trajectory from negative arousal/valence to positive arousal/valence

over the specified duration, and the system will create bespoke

affective music to this specification. Therefore, AffectMachine

has the potential to be embedded in various kinds of well-

being applications to create highly-personalized, affective music for

emotion regulation.
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