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Abstract 
Evidence suggests that sparse coding allows for a more 
efficient and effective way to distill structural information 
about the environment. Our simple recurrent network has 
demonstrated the same to be true of learning musical 
structure. Two experiments are presented that examine the 
learning trajectory of a simple recurrent network exposed to 
musical input. Both experiments compare the network’s 
internal representations to behavioral data: Listeners rate the 
network’s own novel musical output from different points 
along the learning trajectory. The first study focused on 
learning the tonal relationships inherent in five simple 
melodies. The developmental trajectory of the network was 
studied by examining sparseness of the hidden layer 
activations and the sophistication of the network’s 
compositions. The second study used more complex musical 
input and focused on both tonal and rhythmic relationships in 
music. We found that increasing sparseness of the hidden 
layer activations strongly correlated with the increasing 
sophistication of the network’s output. Interestingly, 
sparseness was not programmed into the network; this 
property simply arose from learning the musical input. We 
argue that sparseness underlies the network’s success: It is the 
mechanism through which musical characteristics are learned 
and distilled, and facilitates the network’s ability to produce 
more complex and stylistic novel compositions over time.   

Keywords: Musical structure; Simple Recurrent Network; 
Sparsity. 

Introduction 
Work in the field of neural network modeling has been 
useful in creating simulations of functional machinations of 
human cognition and behavior. While many different 
architectures and learning algorithms exist, this paper will 
primarily focus on Elman’s Simple Recurrent Network 
(SRN) (1990), which was originally developed to process 
and predict the appearance of sequentially ordered stimuli. 
This feature makes the SRN a prime candidate for 
processing the structure of music.  

Modeling aspects of musical composition has shown that 
networks can be trained to ‘compose’ music after learning 
from many examples. One such network is Mozer’s 
CONCERT, which is a modified Elman network that is 

trained on input stimuli and attempts to extract two key 
features: which notes in the scale are musically appropriate, 
and which of those selected notes is the best stylistically. 
While ratings of this network were better than compositions 
chosen from a transition table, they still were "compositions 
only their mother could love" (Mozer, 1994).  

 Other approaches have included aspects such as 
evolutionary algorithms (Todd, 1999) as well as utilizing 
self-organizing networks instead of relying on learning rules 
(Page, 1993).  While most studies have concentrated on the 
success of these networks’ compositions, the studies in this 
paper will concentrate on the internal state of the network as 
it learns. Additionally, subjects’ ratings of the network’s 
compositions over time will be examined, as well as other 
network statistics, such as sparse coding.   

Sparse coding is a strategy in which a population of 
neurons completely encode a stimulus using a low number 
of active units. Taken to an extreme, this strategy is similar 
to the concept of a ‘Grandmother Cell’ that responds 
robustly to only one stimulus, and thus has a very low 
average firing rate. This is directly in contrast to a fully 
distributed system where every neuron takes part in 
encoding every stimulus and fires an average of half of the 
time.  

Sparse coding allows for the possibility that as a 
distributed system learns the structure of the world, it begins 
encoding in a more sparse and efficient manner. The 
benefits of sparse coding have been reviewed in depth 
(Field, 1994; Olshausen and Field, 2004), however this 
paper will concentrate on two of them. The first reason is 
that encoding stimuli using fewer neurons allows for a 
complete representation without the biological demands of 
having every neuron firing (Levy, 1996). The second 
reason, which is highlighted in these studies, is that a sparse 
code develops in order to efficiently mirror the structure of 
the world. 

By examining the neural network architecture over the 
learning trajectory, we can investigate how network sparsity 
changes with experience. Given the conventions of Western 
tonality in music (e.g. common chord progressions), as 
outlined by music theory, the progression of tones in music 
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obeys rules and patterns. These standard transitions impose 
order; notes do not skip randomly around the musical state 
space. When a SRN receives this structured musical input, it 
learns how best to efficiently code the information therein.  

The developing internal structure of the network is of 
prime concern, but of equal importance is how the 
network’s output reflects that internally changing structure. 
For external validation of the network’s ability to produce 
increasingly stylistic output over training, listeners were 
recruited to rate the sophistication of the network’s novel 
compositions. This external evaluation confirms the 
network’s internal measures of sparsity and learning. 

Experiment 1 
In this study, we tested how a Simple Recurrent Network 
learns tonal structure over time by asking: What internal 
changes occur in order to produce increasingly more 
sophisticated compositions? This experiment explores how 
a SRN learns to predict the next note in a musical sequence 
by looking at the sparsity of its hidden layer activations.  To 
elucidate the relationship between sparsity and the 
sophistication (complexity and style) of the network's 
compositions, participants rated the novel compositions 
from several points along the learning trajectory. We 
hypothesize that the sparsity of the network will increase as 
it is trained, and that subject ratings will similarly increase. 

Method 
Network Architecture  
Matlab software was used to program and run the SRN. The 
network was given one note at a time during training; it 
learned musical structure by predicting the next note in the 
sequence, and then compared its prediction with the actual 
next note in the training melody. The error signal 
(difference between predicted and actual) was then 
backpropogated through the network.  
    The network was trained on five simple, 8-measure long 
melodies composed specifically for this study (see Figure 
1). They were monophonic, of a piano timbre, and contained 
no rhythmic variation (all of the tones were quarter notes). 
Notes were held at equal duration in order investigate the 
probabilistic distribution of tonal relationships during 
training.  
 

 
 

Figure 1: Examples of training melodies used as input. 
 

The input and output layers of the network consisted of 15 
nodes each, while the context and hidden layers contained 
30 nodes (see Figure 2). The format of the input was such 
that one note (which was represented by turning on a 
corresponding node of the 15 present in the input layer) 
would be presented per timestep. For every timestep, the 
network predicted the next note in the training series, and 
each epoch of learning was comprised of 32 timesteps. The 
network randomly selected one of the five training melodies 
for every epoch. Hidden and output layer activations were 
transformed using a logistic function, 1/(1+e^(-x)), and 
varied between 0 and 1. Because the last note of one 
training melody is not musically related to the first note of 
the next training melody, the context layer activations were 
reset after each epoch of training.  

Sparsity was measured in the hidden layer of each 
network by looking at the proportion of hidden layer nodes 
with an activation value greater than .3.  These values were 
averaged over six iterations of the network, and were 
measured at 5, 25, 75, 150, 300 and 450 epochs.  

 

 
Figure 2: SRN architecture used in Experiment 1. 

 
Behavioral study 1 
External validation is required to draw any conclusions 
regarding the relationship between increasing sparsity over 
training and improvement in the quality of the network’s 
compositions. Therefore, listeners rated ten sample 
compositions from epochs 5, 25, 75, 150, 300, and 450. 
These compositions were created by inputting the note 
‘Middle C’ at each of these benchmark epochs. The network 
then predicted the next note, which was in turn fed back into 
the network as input. This method of sequence prediction is 
a strength of the SRN architecture, and has been used 
primarily to study grammatical aspects of language (Elman, 
1991).  

 
Participants Twenty Cornell undergraduates volunteered to 
participate in the experiment for extra credit in a psychology 
class. All participants had normal hearing, and had an 
average of 6.2 ± 3.7 years of musical training. 
 
Materials After completing a particular number of epochs 
of training, sixteen notes of the network’s compositional 
output were recorded. Ten examples were recorded from 
each level of training (5, 25, 75, 150, 300, or 450 epochs). 
Each compositional sample was manually transferred from 
Matlab to Finale, a music software program, and converted 
into .wav sound files. All compositions were set to a piano 
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timbre, and rhythm was kept constant (each tone was one 
quarter note in duration). Each trial consisted of a 16-note 
composition (four-measures in 4/4 time), and was 8 seconds 
in duration. The experiment was administered on a Dell 
Inspiron laptop running E-Prime software, and participants 
wore Bose Noise Canceling headphones set to a comfortable 
listening volume. 
 
Procedure After reading the instructions, a brief practice 
session consisting of four trials preceded the experiment. No 
feedback was given during the practice or experimental 
trials; the practice session simply functioned to familiarize 
participants to the types of melodies they would be rating. 
The practice trials were drawn from different points along 
the learning trajectory, including 5, 75, 150, and 450 
epochs, and were different from those included in the 
experiment. The sixty experimental trials were completed 
without interruption and presented in random order using E-
Prime software. After listening to each trial, the listener 
rated the composition on a ‘goodness’ scale from 1 to 7, 
where ‘1’ represented a “poor example of classical music” 
and ‘7’ represented an “excellent example of classical 
music”. Participants were urged to use the whole scale as 
they found appropriate.  

Results and Discussion 
Network Internal Structure 
By examining the activations of the hidden layer at different 
stages along its learning trajectory, we see that sparsity 
increases over time. In other words, as the network 
completes more epochs of training, the internal structure of 
the hidden layer becomes more sparse (see Figure 3).  
 

 
Figure 3: The proportion of active hidden layer nodes 

(sparsity) over the learning trajectory. 
 

As shown above, during the early stages of the network’s 
development, there is a dramatic increase in the sparsity of 
the hidden layer representations, as indicated by a reduction 
in the proportion of hidden nodes with activations greater 
than .3 (note inverted Y axis). Again, these values are 
derived by taking the average over six networks of the 
proportion of hidden activations above .3 (for each training 

epoch in question). After rapidly distilling structure from 
the training melodies, this decreasing trend begins to plateau 
around 150 epochs of training.  

Behavioral study 1 
To assess how well the internal measure of sparsity 
corresponds to the sophistication of the network’s 
compositions, we tested whether sparsity was an 
informative predictor of listeners’ goodness ratings. Indeed, 
listeners displayed a general preference for melodies 
produced after more epochs of training (see Figure 4). 

 

 
Figure 4: Average of listeners’ goodness ratings over epochs 

of training. 
 

Because the sparsity measurements and goodness ratings 
followed roughly the same trend over time, sparsity did 
prove to be an excellent predictor of how sophisticated the 
melodies sounded to listeners, R2 = .95, F = 84, p < .001. 
 

Experiment 2 
The second experiment examines the same network 
structure as the first, but utilizes more complex input 
stimuli, many more training epochs, and employs a new 
sparsity metric. Three movements from J.S. Bach's Suite 
No.1 in G Major for Unaccompanied Violoncello were 
selected for the network’s training input because they are 
musically complex and sophisticated, yet monophonic (there 
is a single, unaccompanied voice). The Prelude, Allemande, 
and Courante were chosen because they can all be 
performed at a similar tempo. These pieces are more 
complex than those used in the first experiment because 
each features different note durations and musical themes. 

 In addition to musical changes, a new sparsity metric was 
adopted from single-cell recording (Rolls and Tovee, 1995), 
in which the square of the mean is divided by the mean of 
the squares (Figure 5). While the metric used in Experiment 
1 is mostly equivalent, the Rolls sparsity metric is used 
pervasively in the literature.  Both the previous sparsity .3 
criterion and the Rolls sparsity metric will be used to assess 
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the sparsity of the hidden layer activations in this 
experiment. 
 
 
 

 

 
 

Figure 5: Equation for Rolls sparsity metric, where n is 
defined here to be the number of hidden layer nodes,        

and r is the rate of activation for each node. 

Method 
Network Architecture  
The same basic SRN architecture from Experiment 1 was 
used in this study. Because of the increased complexity of 
the musical input, MIDI numbers and note durations were 
combined into the input for each timestep. This was 
encoded in the input and output by turning on one pitch 
node and one duration node per note. Duration values were 
represented by sixteen nodes, with each node being 
representative of a note duration ranging from a 16th note to 
a whole note. Due to this increase in complexity of the input 
(a larger pitch range and rhythmic information), the number 
of nodes in each layer was increased. The input and output 
layers now consist of 144 nodes (128 MIDI notes and 16 
durations), and the hidden and context layers contain 64 
nodes. 

This same network architecture was used for two different 
training techniques. The Normal network was fed a 32-note 
sequence, randomly selected from one of the movements of 
Bach, for each epoch of training. A second network, the 
Bigram network, was also trained on 32 notes per epoch, but 
the sequence of notes lacked musical structure: After an 
initial note was randomly chosen from one of the 
movements of Bach, the network’s predictions of the next 
note in the sequence were compared with the actual next 
note. Then, however, the Bigram network skipped to 
another random note within the musical corpus (thus, the 
network was only able to learn musical structure via a series 
of bigrams). This effectively limits the Bigram network's 
predictive capability to the note played immediately prior, 
thereby reducing the amount of structure the network is able 
to learn. Context layer activations were reset in both the 
Normal and Bigram networks after each training epoch. 

A sample of the network’s hidden layer was captured 
every 10 training epochs and used to measure the network’s 
sparse structure.  The entire network was captured at each 
level of training in order to compose novel melodies using 
sequence prediction as in Experiment 1.  

Behavioral study 2  
Participants Ten Cornell undergraduates volunteered to 
participate in the experiment for extra credit in a psychology 

class. All participants had normal hearing, and had an 
average of 2.4 ± 2.7 years of musical training.  
 
Materials For each level of training tested (5, 50, 500, 5 
thousand, 50 thousand, 500 thousand, and 5 million epochs), 
ten 32-note compositions were recorded for both the Normal 
and Bigram networks. Each compositional sample was 
manually transferred from Matlab to Finale and converted 
into a wav sound file. The compositions were all of a piano 
timbre, and the compositions’ rhythmic variation was 
included. Because of the increased complexity of the 
musical material, each trial consisted of a 32 tones. Due to 
some variation in note duration, the trials were of slightly 
different lengths (average length = 12 sec). The experiment 
was administered on a Dell Inspiron laptop running E-Prime 
software, and participants wore Bose Noise Canceling 
headphones set to a comfortable listening volume. 

 
Procedure The same procedural protocol was used as in the 
first study: After reading the instructions, a brief, four-trial 
practice session preceded the experiment. These practice 
trials included an example from 50, 5k, 500k, and 5m 
epochs, and were different from any test trials in the 
experiment. A total of 140 test trials were presented, with 
the 70 trials from the Normal network and 70 trials from the 
Bigram network combined into one large block of trials and 
presented in random order. Listeners rated each composition 
on a goodness scale from ‘1’ to ‘7’ as outlined for the first 
experiment.  

Results and Discussion 
Network Architecture  
As predicted, the internal representations of both networks 
do become more sparse as the network learns structural 
relationships inherent in the music (see Figure 6). This 
pattern continues until roughly 1 million training epochs, 
even while adopting the alternative Rolls (1995) metric of 
sparsity.  

 
Figure 6: Rolls sparsity metric over epochs of training for 

the Normal (blue) and Bigram (red) networks. 
 
The Normal network displays more sparsity in its hidden 

layer activations than the Bigram network. In order to shed 
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light on the nature of the hidden layer activations of the 
network while composing, sparsity was also examined while 
the network produced output. Both networks display an 
increase in sparsity at 5,000 epochs, but return to a less 
sparse state by 5 million epochs.  Though both networks 
display similar degrees of sparsity, the Bigram network 
exhibited sparser coding during composition at 50,000 and 
500,000 epochs (see Figure 7). The Bigram network also 
created simpler melodies than those of the Normal network. 
This is mainly due to the fact that while the Normal network 
is more efficient at encoding the stylistic structure from 
which it is trained, it has more difficulty encoding its own 
output during composition. The Bigram network does not 
have this limitation, as the structure it learns during training 
is similar to what it is capable of composing. In addition, the 
Mean Squared Error (MSE) of both networks decayed 
quickly and reached a plateau with little variation by 30,000 
epochs of training. The Bigram network’s MSE was slightly 
lower than that of the Normal network. 

 

 
 

Figure 7: Rolls sparsity metric while composing after 
different amounts of training. 

Behavioral study 2 
Interestingly, the compositions of the Bigram network are 
better rated by participants than those of the Normal 
network, R2 = .95, F = 19.30, p < .01, as shown below in 
Figure 8. 

 

 
Figure 8. Participant mean response over epochs of 

training for the Normal and Bigram networks. 
 

A comparison was made between the .3 criterion sparsity 
measure and the Rolls sparsity metric  (from training) in 
predicting the behavioral data. The sparsity criterion was not 
a significant predictor of goodness ratings for the Normal 
network, R2 = .57, F = 3.93, p = .14, but was significant for 
the Bigram network, R2 = .81, F = 12.65, p < .05. The Rolls 
sparsity metric was performed similarly: It was not a 
significant predictor of ratings for the Normal network, R2 = 
.62, F = 4.87, p = .11, but was significant for the Bigram 
network, R2 = .77, F = 9.99, p = .05. 

General Discussion 
Examining the way in which neural networks learn musical 
structure can point to ways in which humans learn music. In 
both the human cortex and neural network models, a 
distributed, sparse structure appears to be an optimal way to 
encode musical information. 

In comparing the Normal and Bigram data, both networks 
displayed increasingly sparse internal representations over 
their developmental trajectory. Listeners’ ratings follow a 
general increase that corresponds with the amount of 
training that a network has received as well as the sparsity 
of the network's hidden layer while learning. While we 
expected that subject ratings would increase with training, 
the fact that sparsity also increased with training shows that 
the learning algorithm of the networks picked up sparse 
structure in the input. While many models attempt to build 
sparsity into their network, sparse coding simply arises in 
these networks as they learn.  

The structure of music may in fact lend itself to sparse 
coding. Of the vast number of notes that could be used to 
compose a musical work, only a subset of them are selected 
given the harmonic structure from which the tonal 
relationships are determined. In other words, tonality has a 
hierarchical structure, and its foundation is centered around 
a particular group of tones. This inherent organization can 
be optimally encoded with a sufficient amount of training. 

The Normal and Bigram networks from Experiment 2 
show the difference in hidden layer sparsity that results from 
differing amounts of structure in the network's input. The 
Bigram network did exhibit less sparsity while training, a 
hallmark of less structure in the signal (because transitional 
relationships between bigrams were random). While the 
Normal network is more sparse during training, the Bigram 
network interestingly shows more sparsity during some 
stages of composition, and receives better ratings overall. 
This may be because while the Normal network has a more 
sparse representation during training, it is more likely than 
the Bigram network to enter into a repetitive series of notes 
while composing (such as the tonic triad) because it was 
trained on melodies with a longer musical context (it can 
utilize information from more previous timesteps when 
training). 

There are many possible directions for future study. For 
example, follow-up experiments can implement more recent 
advances in recurrent neural network architectures that 
encode for time information in different ways. Some of the 
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newer models used to generate and predict musical output 
are Long Short Term Memory networks (Eck & 
Schmidhuber, 2002) and Echo State Networks (Jaeger, 
2001). Additionally, the network could use an interval-based 
representation rather than a pitch-based representation to 
examine whether differences in learning and composition 
would arise.   

Future iterations of this study will also examine to what 
extent the network over-learns the training music. 
Overfitting could be investigated by testing how quickly the 
network can learn a novel melody after various amounts of 
training. Also to this end, participants could rate how 
similar the network compositions were to the training 
music. It is possible that differing levels of musical training 
between participants in Experiment 1 and Experiment 2 
contributed to different rating strategies for the 
compositions. A t-test comparing the participants’ training 
across the two studies demonstrated a significant difference 
in musical training, t = -3.08, p < .01. Because this may 
have contributed to rating differences, musical training will 
be controlled in future work. 

Furthermore, continuing to explore the different internal 
characteristics of a network that is composing versus one 
that is learning may yield interesting results. The 
counterintuitive fact that the Bigram network in the second 
study exhibited greater sparsity and higher subject ratings 
shows that the process of composition in a SRN may be 
more multifaceted than previously appreciated. When a 
network feeds itself its own output during composition, the 
inherent complexity of the recurrent loop generates highly 
variable output that warrants further investigation.  
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