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Jamie Forth, Kat Agres, Matthew Purver and Geraint A. Wiggins  *

Computational Creativity Lab, Computational Linguistickab, Cognitive Science Group, School of Electronic Enginemg and
Computer Science, Queen Mary University of London, LondonJK

We present a novel hypothetical account of entrainment in nsic and language,
in context of the Information Dynamics of Thinking model, N3DT. The extended
model affords an alternative view of entrainment, and its eopanion term, pulse, from
earlier accounts. The model is based on hierarchical, statiical prediction, modeling
expectations of both what an event will be and when it will hapen. As such, it constitutes
a kind of predictive coding, with a particular novel hypothtical implementation. Here, we
focus on the model's mechanism for predicting when a perceptal event will happen,
given an existing sequence of past events, which may be musa or linguistic. We
propose a range of tests to validate or falsify the model, atarious different levels
of abstraction, and argue that computational modeling in geeral, and this model in
particular, can offer a means of providing limited but usefuevidence for evolutionary
hypotheses.

Keywords: rhythm, entrainment, cognition, information dynamic s, cognitive modeling

1. INTRODUCTION

We propose a hypothetical anticipatory model of the perception@rghition of events in time. A
model of sequence learning and generation from statislicguistics has been adapted to handle
the strongly multidimensional aspects of music, includingisical time Gabrielsson, 1973a,b;
Jones, 1976, 1981; Conklin and Witten, 1995; Pearce, 2008eRé¢al., 2005Multidimensionality

is a property also of language that can usefully be captuvesdtk, 2005; Kraus et al., 2009; Wiggins,
20123. The model is called IDyOT, (Information Dynamics of Thinkj). IDyOT is a cognitive
architecture, afteBaars(1989 Global Workspace Theory: the aim is to capture as much as gessib
of the framework of basic cognitive function in one uniformgmessing cycle.

We approach the perception and cognition of musical and lingugtming from two
perspectives. Firstly, in the context of music, we discuss aeminal spacedardenfors, 2000
representation of metrical timeFprth, 201). The approach enables precise speci cation of
metrical structures, hypothesized as patterns of entrairtnibat guide attention in musical
listening (London, 201). This perspective can be understood as a top-down speci catioa
theoretical notion of meter. Our second perspective is botiggha mechanism that we hypothesize
is capable of learning such a hierarchical representation eifioal time from exposure to the
statistical regularity inherent in music and everyday pptual experience. Our argument is that
musical listening is coordinated by attentional pattern$iich arise from a process involving
both endogenous generation and induction from perceptuabtinfation. Furthermore, we argue
that the same process underlies the temporal regulation afiiog in general, and we consider
evidence from the domain of natural language to substaatiais claim.
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IDyOT computes anticipatory distributions at multiple levels reliably observed in other species. This hypothesis may also
of granularity with respect to the surface sequence, and we be tested by comparison with extant humans coupled with
hypothesize that the requirement for the temporal predictions analysis of brain volumes in other mammalian species, and
of the dierent levels to coincide is what creates the human with evidence from the fossil record, using the methodology
tendency toward cyclic (even if non-isochronous) meters in in Section 5.
music and poetry. Thus, the work presents a new perspective Finally, the methodology espoused in Section 5 may be applied
on the debate between oscillatory and timer-based modé&lsg to any aspect of the model with support from empirical study
and Durstewitz, 2014 Further, we propose that the combination  of current biology, to hypothesize about evolution, in two
of coinciding expectations at dierent levels of granularity ways: rst, the relationships between known developments in
are responsible for the percept of meter, explaining the e ect species (e.g., cortical volume) and parameters of the model
modeled byLondoris (2019 additive cycle approach to metrical may be investigated; and, second, di erently parameterized

strength. versions of the model may be allowed to compete in a
simulated environment, testing the evolutionary value tef i
2. THEORY AND HYPOTHESES various features.

Since IDyOT is a multi-faceted theory, we must decompOS(Ian the following sections, we lay out the details of our motiva

it. Introductory descriptions are given by/iggins (2012band and of the temporal aspects of IDyOT.
Wiggins and Forth (2015)and summarized below. Here, we list
our speci ¢ hypotheses, to map out the subsequent argument.

3. RHYTHM AND TIMING IN SEQUENTIAL
PERCEPTION

We begin from the hypothesis, familiar in cognitive science,

that the brain/nervous system is an information processing3.1. Prediction in Temporal Perception:

organ, embodied or in isolation. Speci cally, our perspectiveaConcepts and Terminology

is that the brain/nervous system issaatisticalinformation  The key idea of IDyOT is that one route to evolutionary
processing system. More speci cally still, our perspective igyccess is for an organism to predict what is likely to happen
that the brain/nervous system isaquential predictonotonly  npext in its environment, and that the ability to learn an
does it serve the function of quasi-probabilistically deéddc  appropriate model of experience to inform such predictions
the sources and nature of stimulus received, but it alsoe®ervis an important cognitive ability of higher animals. Further,
to predict future events in the world. Thiequentigdrediction  we propose that the value of such prediction is increased
element diers from statistical models of cognition, whoseijf the prediction of what is to happen is coupled with the
primary concern is deducing the likely cause of currentinput. prediction of when it will happen. Playing music, alongside
We propose a particular perceptual learing mechanismmany survival traits, requires the ability to judge precisely
related to but di erent from extant others, and conceived asyhere in time an action should be placed, usually anticipating
a cognitive architecture. It constructs a simulated, hieih&cal  the exact moment with motor preparation so that timing of
mental model of the perceptual history of an organismsound and/or movement is correlated with other activity et
from which predictions about future states of the world, atyorld. It is self-evident that organisms without human-szal
multiple levels of abstraction, can be generated. This, whegyrtical development are capable of impressive feats of predict
implemented, constitutes a testable hypothesis: its behavigoypled with synchronization: for example, chameleons catghin
can be compared with extant humans and thus, it may bgast- ying insects, and dogs catching balls; what is notlent
falsi ed. Here, we focus on the temporal aspects of the modeji these organisms is theoluntary maintenance and repetition of
falsi cation in these terms might entail falsi cation offithe  sych behavioiis rhythmic synchronization with external stimuli.
temporal part of the model, or of its entirety, dependingonthe  Fitch (2013) surveys usages of terms relating to general
exact outcomes. and musical timing. Our taxonomy describes the same broad
The underlying principle of the model is that @iformation  phenomena, but is di erent, and we must clarify our usage, and
e ciency: everything the model does is aimed at reducinghow it di ers from Fitch's. Fitch argues that timing is an exata
the computational expense of processing the information toyf hierarchical cognition, and we agree. However, as wilbhee
the storage and representation of information, and the Us@ertainly hierarchical, are explicated in terms of the uriyieg

of information in predicting future states of the world. We predictive mechanism, and do not require separate explanstion
suggest that this is a principle that is likely to hold in biology of their own. Particularly problematic are Fitch's notionispulse
because cognitive substrate (nervous tissue) is very eXpensgndentrainment Pulse is introduced thus:

to grow and operate, and therefore that there is pressure to

optimize its utility. Evidence for this approach, in terms of  First, rhythmic cognition typically involves extracting a pulse
modeling current human behavior, is given Byarce (2005) or tactus at a particular rate (the tempo) that serves
andPearce and Wiggins (2012) as a basis for organizing and structuring incoming sonic
Our proposal o ers a hypothetical account of the relationship ~ events. (Fitch, 2013p. 2)
between cortical volume and mind function, including

temporal memory, and of why humans entrain in ways notand, later,
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An important characteristic of musical rhythm, ..., is  or from a mechanism capable of capturing the simpler rhythms
isochronicity. Eitch, 2013p. 2) experienced in the world, which is then able to construct
complexity as needed; or perhaps a combination of the two
Fitch (2013)also notes, later, that it is not the case that alllBown, 2008; Bown and Wiggins, 2009; Merker et al., 2009; Fitch,
musics display a(n isochronous) pulse—South Asian and MiddIg012; Bowling et al., 2013; Ravignani et al., 2013
Eastern musics often do not have a pulse in this simplied We propose that the last of these options is the case: a bottom-
Western sense. This is problematic, because (in the abséace aip hierarchical perceptual construction of temporal sequence
stated alternative) it implies that these musics have noisfas  accounts for rhythm and meter in music and language. It has
organizing and structuring incoming sonic events.” We betia been selected for because it promotes predictive power which

di erent de nition is required. enhances information processing and the action that resudta
For us,entrainmentis the key concept. Fitch's de nition runs it. The enhancement is achieveddtyentional orientatiopwhich
thus, in terms of his notion of pulse: we discuss next.

When listeners extract a pulse from the acoustic surface, and 3.2. Attentional Orientation
adjust their own behavior to it (whether their own acoustic ~ The orientation of attention toward specic spatial locat®mn
output, in ensemble playing, or their movements, asindance) this  objects or moments in time to optimize behavior has been
is calledentrainment. (Fitch, 2013p. 3) extensively investigate@.oull et al. (2000flescribe two distinct
forms of attentional shiftendogenoys top-down mechanism
In this de nition, entrainment is dependent on thpresencef jnitiated to meet cognitive demands, ardogenoys bottom-up
a pU|Se, that i.‘EXtraCtedilnd that iS, by de nition, iSOChI’OI"IOUS. mecharusm S“mu'ated by unexpected events.
Therefore, the movement of Indian physical performers that cherry (1953)investigated auditory selective attention (the
is correlated with their culture's non-isochronous musgcriot  «ggcktail party e ect’) in experiments designed to reveal the
entrained. Evidence suggests that this is a narrow de nitio extent to which, and under what conditions, listeners could
(Clayton, 200y. disambiguate simultaneously spoken, but spatially-separated,
The problem arises from the Western-centric notion that thedialogues recorded by the same speaker. Wearing headphones,
perception of pulserecedeshythm and meter perception. We gypjects were asked to attend only to the speech signal ceive
suggest that the experience of pulse (isochronous or othe)wistg their right ear and to repeat the words while doing so.
is not primary, but an epiphenomenon of the statistical struetu Subjects could reproduce the spoken dialogue perfectly, and
of music. Therefore, we de ne entrainment di erently, allawy  \yhen subsequently questioned, were largely unable to repgrt an
our Indian dancers to be entrained: detail from the unattended source, beyond general chariatite
such as speech vs. non-speech, and male vs. female speaker.
Entrainmentis the papacity to sustainedly synchronize with the However, in a subsequent experiment, subjects performed the
placement of extrinsic patterns of events in tim&utonomic same task but with stimuli consisting of a single speech signal
entrainment is the capacity of an organism to entrain .W'thOUt delivered independently to each ear with decreasing inter-ea
intentional involvement (e.g., in reies); this is the kind of . . .
entrainment that cannot be switched o by the organism time dglay. In this case, r\early all subjects reported thay the
exhibiting it. Voluntary entrainment is the capacity of an  recognized that the two signals were the same when the delay
organism to entrain at a non-autonomic level (e.g., Snowball the Was in the region of 2-6's, suggesting that unattended sgmal
cockatoo:Patel et al., 2009; Schachner et al., Y0S@istained processed to some degree, and under certain conditionshéee a
voluntary entrainment is the capacity of an organism to entrain  to impact on conscious awareness. This behavior is a negessar
non-autonomically without extrinsic encouragement or reward  consequence of the IDyOT architecture.
(humans are the only known example). Cherry concluded that this mechanism was statistical in
nature, and that the brain stored transition probabiliti¢és,be
Musical entrainment can be extremely complicated, withgple to estimate maximum-likelihood to guide perception and
irregular rhythmic structures spanning cycles of severebsds, overcome noisy signals. This was assumed to account for the
(e.g., Greek folk music), or with simultaneous multiple leve fact that even dialogues spoken by the same speaker, presented
of synchronization at dierent speeds and with very subtlesimultaneously but non-spatially separated, could eventuall
deviations from a relatively simple regular beat which aghty  pe disambiguated after multiple hearings (up to 10—20 times).
musically salient, (e.g., funk and rap). Equally complicated-urther evidence is provided by a variant of the previous
though dierent, entrainment is required for production and experiment involving the recognition of cliché phrases. The
comprehension of speech. It follows that entrainment isdialogues consisted entirely of concatenated cliché phrases.
extremely advanced in humans, even though it needs indalidu participants were reliably able to detect whole phrases ane ti
development to reach the degrees of hierarchy and precisigfith relative ease, presumably relying on highly likely word
found in musicians and dancers. Given that such rhythmiqransitions inherent to cliché phrases. However, betweeagpés,
sophistication is hard to motivate from a purely biologicalno expectations could be generated, and participants werdlgqua
evolutionary perspective (see e.fylerchant and Honing, 2014; likely to switch between dialogues at such phrase boundaries
Merchant etal., 201%0r discussion of such biological evolution), and were therefore unable to completely disambiguate the two
either it must arisede novofrom social evolutionary pressures; dialogues. The IDyOT prediction mechanism accords with this.
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In addition to spatial information, listeners can also uskart co-operate successfully in the world, humans must be able
stimulus features, such as pitch, to orientate attentionamv to synchronize movement. Synchronization requires adeura
particular events\(Voods et al., 1991; Woods and Alain, 1993 temporal prediction to engage the necessary motor controlrprio
Semantic salience impacts selective attention, and top-dowo an anticipated timepoint: successful co-ordination canbe
attention is also mediated by location, pitch, timbre, irgéy  based on reactivityl(revarthen, 1999-2000; Clayton et al., 2004
(Shinn-Cunningham, 2008 Crucially, our perception of temporal invariance and capacity

In the visual modality,Posner et al. (1980developed a for entrainment allow us to direct attentional resourcesvérd
reaction time paradigm to provide evidence in support of aprobably-salient moments of time; thus, we better predicinésve
theoretical attentional framework consisting of a limitedpacity in the world and accordingly act more e ciently. E ciency, in
attentional mechanism coupled with adaptive expectation ofhis context, is a survival trait.
where signals were likely to appear in the visual eld. Entrainment capacity in non-humans has been supposed

Crucial to the temporal aspect of IDyOT developed belowio correlate with the capacity for vocal learningatel, 2006;
time itself is also a modulatory factor for attentional ariation.  Schachner et al., 20)%hough this is now contested/(ilson
Coull (2004, p. 217distinguishes between temporal attentionaland Cook, 2016 Even so, from this, and other evidence from
orienting (Chow attentional processing varies as a functén lingustics, it may be that entrainment is related to the pisscef
time") and temporal selective attention ("how time perceptionvocal imitation. This, in turn, is implicated in learning tgeak
varies as a function of attentional selectivity'). (Speidel and Nelson, 20),2which entails speech perception

ERP evidence demonstrates that sounds presented at attendeden prior to the development of semantic association and of
times elicit a larger N1 than sounds at unattended timesnge speech production). A reason for entrainment to be related to
et al., 2003; Sanders and Astheimer, 20@ull and Nobre all these things would be cognitive e ciency, according hwit
(1998) report the rst direct comparison between the neural the underlying principle in IDyOT. Attending to speech, as to
correlates of spatial vs. temporal cues, revealing that botlnything else, is energetically expensive. If periods ohtbie
temporal cues (when a target will appear) and spatial cuesan be appropriately timed, by predicting when the next unit of
(where it will appear) similarly improve reaction time, but tha information from an interlocutor will appear, such as oriemg
hemispheric asymmetry is evident between the two conditionsttention toward initial portions of words in continuous spee
Similar ndings are also reported biiobre (2001)and Grin (Astheimer and Sanders, 2Q12he e ciency of attending is
(2002) Nobre (2001, p. 1320demonstrates that there is no optimized (Large and Jones, 199%urther, it is easy to imagine
hardwired cue interval, but that “the utility of a warning eu situations where the capacity for physical synchronizationldo
depends upon the speci ¢ temporal information it carries andbe of survival bene t to early humans: for example, the ability
the degree of certainty.” A hypothesized relationship betwe to walk in step, but with irregular paces, to minimize the
temporal uncertainty and attentional focus has long been thaudible traces of a hunting party. Further, shared entraintne
subject of empirical investigation. Early work B¥lemmer would be a necessary feature of e ective sustained convensat
(1956, 1957)proposed a model of the relationship betweenbecause synchronized prediction in a listener greatly iases
reaction time and an information-theoretic measure of timethe likelihood of successful information transmission. Mdslof
uncertainty. In processing language, preschool children anthusical and language entrainment are similar, though lawgu
adults employ temporally selective attention to preferentiall seems to be more tolerant of expectation breach: an equally
process the initial portions of words in continuous speech.rigoi hierarchical system dbeatsfor linguistic synchronization is a
sois an e ective listening strategy since word-initial segis are  given in phonology (e.gklawkins and Smith, 2001; Hawkins,

highly informative (\stheimer and Sanders, 2009, 212 2003.
. Humans can entrain to a beat, even when it is irregular or
3.3. Entrainment variable, and many nd it di cult not to do so, when presented

Our argument, then, is that patterns of events in the world a ordwith music that they nd engaging. The phenomenon is studied
entrainment, which in turn a ords attention-orienting bek@r,  extensively in the music cognition literature, along withing

if there is a perceptible regularity to the patterns' occurenc and rhythm (e.g.Patel and Daniele, 2003; Cross and Woodru ,
across a range of time-scales. Regularity and periodicity am08; Cross, 2009; Repp, 2011; Fitch, 2012, 2013; London,
therefore invariant qualities in perception over time, a fact2012; Merchant et al., 20).550me non-human species exhibit
which sits neatly with the general principle that sequentiatemporary entrainment to music when encouraged to doraié|
grouping of events enhances prediction and leverage and/en al., 2009; Schachner et al., 2)@ad others, such as crickets,
understanding of causality. In music, the notion of perceptuaexhibit synchronization via re ex response (eldartbauer et al.,
invariance is re ected in the language used to describe lffigh 2009, but sustained self-motivated active entrainment seems t
periodic rhythms, which are sometimes referred testtionary  be unique to humans\f/ilson and Cook, 2016 Grahn (2012)
(Shmulevich and Povel, 200More generally, the occurrence gives a useful survey of related research in neuroscience.

of invariance in the natural world is highly suggestive of The question of whether such control is achieved by osoilat
intentional behavior, such as the distinctive footfalls @f or by interval timers remains openGrahn (2012)presents
predator or chosen mate. Furthermore, an argument for theevidence for timer-based control, whilearge and Jones (1999)
evolutionary adaptive quality of entrainment can be made irargue for oscillators. Sééss and Durstewitz (20140r a wider
terms of social interaction and cohesion. To interact and tasurvey of contending models. Evidence from music, beyond the
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Western tendency toward regular binary or ternary divispn and predictability, to the segmentation unit naturally useg b
clearly undermines a naive oscillator model in which phasespeakers and acquired by infantsespor et al., 20)1Indeed,
locked oscillators simply oscillate to determine metereotfise, psycholinguistic evidence shows that rhythm and timing play a
fairly simple, naturally divisible meters such gsand the jazz role in perception, with rhythmic stress a ecting attentiorvgn
favorite gcg would be at best problematic, and the long cycleso phonemes Ritt and Samuel, 1990expectations set up by
of groupings of irregular length found in Greek, Arabic andsyllable stress or intonation patterns early in a sentencetengc
Indian music would be inexplicable. Because our model opsratehe perceived identity of ambiguous words later anlley and
at a fairly high level of abstraction from the neurophysiglpg McAuley, 200% and regularity in timing speeding up processing
it is relevant to note that an oscillator can be implemented agQuené and Port, 2005E ects are also seen in production: even
a timer, repeatedly triggered. Thus, at more abstract leokls infant babbling shows syllable timing patterns characteriet
modeling, the distinction is only semantic, and the e ect canthe language being learneldgvitt and Wang, 1991
reasonably be simulated without addressing the detail ef th Rhythm and timing are, of course, not xed, and here
neural implementation. Then, a given temporal interval may besxpectation and predictability play a signi cant role. Infoation
represented by a parameter, forming a closed system with trmntent has e ects both globally, with average speech rate
oscillator or timer that accepts it. decreasing as information density increases across larguag
An important class of approaches to these issues lies in tH&ellegrino et al., 20),land locally, with local speech rates and
literature on Predictive Coding (e.drriston, 201)and Bayesian prosodic prominence observed to vary with the predictability o
Inference (e.g.Tenenbaum et al., 20).IThese approaches have the current segment, both for syllablesy(ett and Turk, 200}
been investigated on the neuroscienti c level by, for exampl and words Bell et al., 2003
Vuust et al. (2009)Vuust and Witek (2014)Vuust et al. (2014) A similar picture emerges when we look at timing e ects
and Honing et al. (2014) Vuust et al.'s work, in particular, between speakers in dialogue. First, speakers a ect each other
presents neuroscienti ¢ evidence for a theoretical modehwa  as regards the word- or segment-level timings discussedeabo
similar motivation to that presented here. As such, the préserboth speech rate and information density converge amongst
work may oer a more detailed explanatory account of theinterlocutors Giles et al., 1991give a summary), with some
observed neurophysiological responses, as suggeskédibyey evidence that degree of convergence is related to high-leve
and Mamassian (200&nd Wiggins (2011) interpersonal factors such as the level of cooperatidar(son
Next, we discuss rhythm and meter in language and musict al., 2013 Second, conversational participants are apparently
and the a ective e ects of expectation in pitch and rhythm, in experts in timing at the level of utterances trns (segments
context of our de nition of entrainment. There has been foer  during which one speaker holds the conversational odcks
debate elsewhere over the relationship in the literatuig (@atel, et al. (1974 show that turn-taking is far from random: the oor
2008; Jackendo , 2009; Fabb and Halle, 90which there is not  can be taken or surrendered at spedransition relevance places

space to survey here. and speakers and hearers are apparently aware of these and able
. to exploit them.Stivers et al. (200%how that these abilities are
3.4. Rhythm and Meter in Language cross-linguistic and cross-cultural: speakers and hearersage

Speech naturally shows regularities in timing, their naturhe timing of these transitions to avoid overlap, and minimiz
varying across languages. Until recently the view was thafjences; and experiments suggest that disruptions in natural
these rhythmic dierences stem fromsochrony-an even jnteraction timings are noticed by infants as young as 3 rhent
distribution of certain segment types over time—with indival  (Striano et al., 2006Heldner et al. (2013xtend this to the more
languages either syllable-timed, mora-timed or stresedl (e.9., speci ¢ idea ofbackchannel relevance spaskswing that even
Abercrombie, 196)7 For eXampIe, whereas Italian Speaker%imp|e feedback vocalizations (e_g_' “uh_huh") are go\@ﬂmﬁ
appear to maintain approximately equal durations for eachygnstraints of appropriate timing.
syllable, English speakers tend to adjust their speech rate crycially, studies of turn-taking show that inter-speaker
to maintain approximately equal durations between stresselansition times are too short for this behavior to be rewetiif
syllables, even when multiple unstressed syllables ar@oged: e waited for the end of the previous turn to react, we simply
I ‘ I I wouldn't have enough time to plan, select lexical items and
(1) LOOK atthat WEIRD THING inthe FRIDGE begin to speak (requiring of the order of 600 ms) within the
: : : : durations observed empirically (c. 200 ms). We must therefore
However, empirical evidence does not uphold this strictpredict the end (and content) of turns as we hear them, to
typological division, with some languages falling somewherbegin our own response (se€ecvinson and Torreira, 2015;
between syllable- and stress-timed (e.Qimitrova, 199). Levinson, 2016 Expectation is therefore key to turn-taking:
Instead, research suggests that all languages are e edivedg- EEG experiments show correlates of turn-end anticipation
timed and that the apparent typological dierences can bgMagyari et al., 20)4and models have been proposed based on
accounted for via dierences in stress prominence, syllablsyllable-timed oscillators\/(ilson and Wilson, 2006 However,
complexity, and variability of duration of vowels and consots  experiments suggest that this expectation is driven by factor
(Dauer, 1983; Grabe and Low, 2003; Patel and Daniele, 20@&; many levelsGrosjean and Hirt (1996show that prosody
Patel, 2008 These di erences lead to the impression of di erent helps listeners predict when a turn is going to end, although
rhythmic classes and perhaps, via their e ects on perceptioits utility depends on language and on position in the sentence.
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However,De Ruiter et al. (2006asked participants to predict sensation of meter isinduced from a stimulus in conjunctiith
end-of-turn times with various manipulated versions of reed  both innate and learned responses to periodic or quasi-peciodi
speech: their predictions were accurate when hearing thénatig stimuli.
recordings, and when the intonation information was remdye Extending the notion of categorical perceptiohpndon
but accuracy dropped wheonly intonation information was (2012)argues that meter is a form of sensorimotor entrainment,
present and words could not be understoddagyari and De that is a “coupled oscillation or resonance,” aorded by the
Ruiter (2012)showed similar results when asking participantstemporal invariances commonly present in musical structure.
to predict the words remaining in a sentence. In machineFor listeners, this is one mechanism by which attentional
classi cation tasksNoguchi and Den (1998and Ward and resources can be directed toward predicted salient timepdnt
Tsukahara (200Q0)among others, show success in predictinge ciently process complex auditory stimuli. For musicians,can
backchannel points using prosody; but in a general turnindeed any form of movement associated with musical stimuli
end detection taskSchlangen (20068howed that combining entrainment is necessary for the co-ordination of physical
acoustic, lexical and syntactic information improved aemy, action.
andDethlefs et al. (201&how that people's tolerance of speaker London (2012)provides empirical support for his theory of
overlap depends on information density as well as syntactimeter as entrainment from recent advances in neuroscience,
completeness. While prosody contributes information, thenwhich shed light on the underlying biological mechanism of
lexico-syntactic or higher levels must contribute as muchot ~ rhythmic perception. Neuroimaging studies have discovered
more. patterns of neuronal activity sympathetic with metrical
Itis clear, then, that rhythmic structure pervades langyageé entrainment, providing convincing evidence that metrical
that its perception and production are governed by expectatioperception is both stimulus driven and endogenous. Di ering
both within and between speakers—with this expectation basdeEG responses to trains of identical pulses are reported by
on information at a variety of levels. IDyOT theory proposeatth Brochard et al. (2003and Schaefer et al. (2018s evidence
this expectation is generated by the same general mechasismfar subjective metricization.Snyder and Large (2005and
that which a ords musical meter perception, which is the topic oflversen et al. (2009both present ndings that lend support

the next section. to endogenous neural responses correlating with accents
. . that are only loosely coupled with external stimuli, and in
3.5. Rhythm and Meter in Music the later study it is also demonstrated that the priming of

A distinction commonly made in the literature is that betwee g endogenous meter has a predictable e ect on subsequent

musical meter and rhythm, although there is debate over thguditory responsesNozaradan et al. (2011present evidence

extent to which they can be treated independentiyogper of measurable neural entrainment to perceived and imagined

and Meyer, 1960; Benjamin, 1984; Hasty, 3J9B@ndon (2012, meter.

p. 4) de nes rhythm as involving “patterns of duration that are e degree to which listeners can induce a sense of meter from

phenomenally present in the music.” Duration here refers nok, rhythmic surface has also been shown to strongly a ecttgbili

to note lengths, but to thenter-onset intervallOl) between i, rejiably processing rhythmic informatior¥rube and Gri ths,

successive notes. Rhythm therefore refers to the arrangeofie 5009 \Where a stronger sense of meter is induced, participants

events in time, and in that sense can be considered as samethicoy|q more accurately detect rhythmic deviations. In thenea

that exists in the world and is directly available to our SBYS  gyneriment, the authors also provided evidence suggesting the

system. . ) importance of closure at the endings of rhythmic stimuli irder

Meter can be thought of as the grouping of perceived beatg,, |isteners to report a stronger sense of perceived rhythiitjca

or pulses, simultaneously extracted from and projected on 10 @pen endings were shown to leave listeners feeling uncertain

musical surface, into categories, which is typically exe®ss ahout the structure of rhythmic stimuli, demonstrating how

the “regular alternation of strong and weak beatstidahl and  t4e ends of sequences can inuence the perception of the

Jackendo, 1983p. 12). London strongly situates meter as theynole.

perceptual counterpart to rhythm: Composers have long exploited our capacity to maintain
a metrical context (i.e., our capacity for sustained volupnta

: . ntrainment), which i ibl ven in th resen f
anticipation of a series of beats that we abstract from the rhythmic € t?t' ent) . lc t's Fos;be ef . tthe [:_)(;Jset_ ce lo
surface of the music as it unfolds in time. In psychological terms, conicting musical stimull. - syncopation 1S the intentiona

rhythm involves the structure of the temporal stimulus, while ~ Fhythmic articulation of less salient metrical timepointghich

meter involves our perception and cognition of such stimuli.  in itself is evidence for our strong tendency for entrainrhen

(London, 2012p. 4) since if we could not independently maintain a sense of

meter the concept of “o-beat” would be meaningless. The

The experience of meter can, therefore, be considered asnation of a continuous oscillation in attentional energy
process of categorical perception, where the surface detdlile 0 provides an account, importantly one with an empirically
temporal stimuli, such as the particular structure of the tiwyic ~ grounded underlying mechanism, of the commonly held view
pattern, or any expressive performance timing, are perceivéd withat meter concerns regular patterns of strong and weak
reference to a hierarchical organization of regular beatee beats.

[M]eter involves our initial perception as well as subsequent
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3.6. Affective Responses to Expectation in This entails a representation in which a norm (the standard
Timing beat, isochronous or otherwise) is directly implied, but ihigh
Huron (2006)argues that prediction, experienced as expectatioryariation may be quantied so that further prediction and
is a driver of musical a ect. Huron proposes that the fee”ngassociated a ect may be modeled. Such a representation is the
of uncertainty which corresponds with entropy in a predictive Subject of the next section.
distribution (Hansen and Pearce, 2Q1l4nakes a substantive
contribution to the aesthetic of music: changes in tensiame d 3.7. A Conceptual Space of Rhythm and
to changes in uncertainty resolving into expected certaioty Meter
denial of expectation, is sometimes called the “ebb and ow3.7.1. The Theory of Conceptual Spaces
of music. Empirical evidence of this relationship is supplied byGardenfors (2000proposes a theory of conceptual spaces as
Egermann et al. (2013correspondence was found, by directa geometric form of representation, situated between sub-
and indirect response, between aective change and changgmbolic and symbolic representation. The theory proposess tha
in information content as predicted by Pearcéiformation concepts—entirely mental entities—can be represented ustag s
Dynamics of Musi¢IDyOM) model (Pearce, 2005; Pearce andof dimensions with de ned geometrical, topological or ordin
Wiggins, 201 properties. The formalism is based batweennesgom which a
However, anticipation of what is coming next (followed by notion of conceptual similarity is derived.
the outcome and its concomitant a ect) is only one aspect Gardenfors' theory begins with an atomic but general
of this response. Another key aspect is the entrainment thatotion of betweennessn whose terms is de nedsimilarity,
allows groups of humans to perform music together, in perfectepresented as (not necessarily Euclidean) distance. Thissal
but exible, consistent time, in ways which have never beemodels of cognitive behaviors to apply geometrical reasoning
demonstrated in other species. to represent, manipulate and reason about concepts. Sinyilarit
An open question is why the act of entraining should produces measured alongjuality dimensionswhich “correspond to
positive a ect, as it doesHove and Risen, 2009; Tarr et al., the di erent ways stimuli are judged to be similar or di erent”
2015. One possible answer is that, because cognitive entraihnmef(Gardenfors, 2000p. 6). An archetypal example is a color
is necessary for e cient speech communication (see Sectiospace with the dimensions hue, saturation, and brightneashE
3.4), mutations that select for entraining capacity, andoalsquality dimension has a particular geometrical structurer Fo
for exercising of that capacity are favored. Thus, a capacigxample, hue is circular, whereas brightness and saturation
which is, presumably, grounded in fundamental cyclic betvavi correspond with measured points along nite linear scales.
such as locomotionKitch, 201, might be exapted to support Identifying the characteristics of a dimension allow mewyiul
communication through speech, but also social bonding tigtou relationships between points to be derived; it is important to
shared musical activity. Since speech and social bonding anete that the values on a dimension need not be numbers—
interlinked, and social bonding is crucial to human surviva though how an appropriate algebra is then de ned is not
the wild, one can postulate a tight feedback loop betweerethesliscussed.
various factors, leading to the advanced capacity for muarua Quality dimensions may be grouped inomains sets of
speech rhythm in modern humans. This account places neithentegral(as opposed teeparabledimensions, meaning that every
music nor language as the progenitor: it would be the basis afimension must take a value to be well formed. Thus, hue,
an evolutionary theory in which they develop in parallel fromsaturation, and brightness in the above color model forrmals
a common root, possibly through shared mechanisms and/odomain. Each domain has a distance measure, which may be
resources. a true metric, or otherwise, such as a measure based on an
There remains something of a lacuna in the literature onordinal relationship or the length of a path between vertiges
musical a ect, with respect to speci ¢ small-scale deviatias a graph. Thencezardenforsde nition of a conceptual space is
in groove. It is to be hoped that a model like IDyOT will render “a collection of one or more domainsG@ardenfors, 200(. 26).
hypothesis formation in this area more readily achievablel anFor example, a conceptual space of elementary colored shapes
thence empirical study may be enabled. However, in both speeciould be a space comprising the above domain of color and a
and language, a ectis manipulated, intentionally or othesgyiby domain representing the perceptually salient features of engiv
both time and pitch—as in the frustrating denial of expectatio set of shapes.
by a speaker who pauses too much, or by a performer whose Since the quality dimensions originate in betweenness,
timing is poor. Kant (1952)proposes a theory ofhcongruity —similarity is directly related to (not necessarily Euchdé
for positive a ective response in humor, and something similarproximity. Such spatial representations naturally aord
to this may apply here; however, we reserve this discussion fegasoning in terms of spatial regions. For example, in the
future work. domain of color, a region corresponds with the concegd.
Here, what is important is that the expectations generate@oundaries can be adaptive, providing the formalism with an
in time form a predictable, if locally irregular, structurand  elegant means of assimilating new knowledge, and the sysat it
small variations in that structure are desirable, givingerito can be subject to geometrical transformation, such asrsgali
a ective responses such as “feeling the groove” in mugitek  constituent dimensions, modeling shifts in salience. Forepu
etal., 201)and “pause for emphasis” in languages(in, 1990 numerical dimensionsGardenfors (2000, pp. 24—2@ntatively
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suggests Euclidean distance for similarity in integralefisions, 4. IDYOT. THE INFORMATION DYNAMICS

and the city-block metric for separable dimensions. OF THINKING
3.7.2. A Geometrical Formalization of Meter and 4.1. A predictive cognitive architecture
Rhythm We now outline the IDyOT architecture. The aim of the current

Forth (2012formalized London's theory of meter ¢ndon, 2012, section is to explain enough detail to allow the reader toofall
Section 3.5), seeking quality dimensions to express all tysw our account of the timing aspects. Further explanation is igive
in which metrical structure may be variable in perceptiéorth by Wiggins (2012bandWiggins and Forth (2015)
(2012)speci es two conceptual space representations of metrical IDyOT implements Baars' Global Workspace Theory (GWT,;
structure, denoteaneter-p and meter-s, to enable geometrical Baars, 1983 a ording a computational model of hypothetical
reasoning over metrical-rhythmic concepts. The simpler spaceognitive architecture. GWT is primarily intended to accaun
meter-p, represents the periodic components of well-formedfor conscious experience, and that is relevant to some aspects
hierarchical structures that correspond with metric entr@ient.  of IDyOT theory. However, it is the underlying mechanism
It can accommodate all theoretically possible forms of matric that is of interest here, in our references to both theories.
structure, while entrainment itself is bounded by fundarten A number of generatorssample from a complex statistical
psychological and physiological constrairitejdon, 201). The  model of sequences, performing Markovian prediction from
principal a ordance of the geometry is direct computation of context (Viggins and Forth, 207)5Conceptually, each generator
similarity between musical rhythms with respect to a metricamaintains a bu er of perceptual input which may include mis-
interpretation. In a genre classi cation task, exemplars Gireage  perceptions and alternative perceptions due to the possibility
of dance music styles were projected as points in each spacé.multiple predictions matching ambiguous or noisy input,
Applying simple nearest-neighbor clustering over the points irexpressed as symbols, whose origin is explained below. Each
each space, classi cation accuracy of 76% and 81% was athielse er serves as a context for prediction of the next (as yet
for meter-p and meter-s respectively, compared to the naiveunreceived) symbol; predictions are expressed as distribsitio
classi cation baseline of 22%. over the alphabet used to express the input. A bu ered sequence

The overall general spaces are quite high-dimensional, big ushed into the Global Workspace when it meets a chunking
current thinking is that any individual actually uses a sulspa criterion as described belovigure 1 gives an overview; see
attuned to their enculturation. Thus, someone encultudate Wiggins (2012h)Wiggins and Forth (2015or more detail.
purely in Western rock would not have in their conceptual space IDyOT maintains a cognitive cycle that predicts what is
the dimensions required to capture, say, the Yoruba timelineexpected next, from a statistical model, expressed in terms of
explaining why even accomplished Western musicians mustelf-generated symbols that are given semantics by perdeptua
learn to relate to such non-Western metrical structureseTh experience. IDyOT is focused on sequence, and this is in part
dimensionality of the spaces depends, also, on the number dlie to the musical focus of its ancestor, IDyOM (Information
metrical levels instantiated in the overall metrical sttue. Dynamics of MusicPearce, 2005; Pearce and Wiggins, 012
Therefore, musically less structured rhythms inhabit a dow IDyOM models human predictions ofvhat will happen in
dimensional space; and, conversely, each space may be ektende auditory sequence, and takes account of information &bou
by the addition of new dimensions corresponding to higherelev musical time in making its predictions. It is the most succelsf
groupings or lower-level beat subdivisions. model of musical pitch expectation in the literaturieéearce and

An important aspect of this representation is its ability Wiggins, 200§ but it cannot predicivhenthe next event will fall
to abstract metrical structure from the tempo and expressivén a statistically defensible way, and it is a static modelratpey
variation of individual performances. While it is possible toover a body of data viewed as a xed corpus: it has no interaction
instantiate the representation to the point at which speci alre with the world; it has no real-time element. The focus of this
times are included, and thus actual performances are repteden paper is to extend the IDyOT model with timing, to show how
these times may be abstracted out. In this case, a point in theaccounts for musical meter, potentially in real time.
abstracted subspace represents a schematic, regularizéoinver  Figure 1 illustrates the cyclic (and hence dynamical) nature
which may capture multiple performances of a given rhythm: anaf the IDyOT model. The generators sample from statistical
so the region that the individual performances inhabit cdtasés  memory, synchronized by its own expectations of the perceptual
a concept undeGardenforsnotion of convexity. The geometry input, if some exists, that it receives. If there is no input,
of the space then allows us to distinguish groove, inconsistethe generators freewheelFi(k et al., 2009; Wiggins and
timing errors, and tempo change because of their di erentBhattacharya, 20)4conditioned only by prior context, and this
statistical properties: the rst is a tightly de ned point stidy  is where creativity is admitted. In the current paper, we focus
away from the regularized rhythm, the second is a cloud acbunon the perceptual input and synchronization. Perceptual input is
a regularized rhythm, and the third is a monotonic trajegtor matched against generators' predictions, and where a madcsle
around the regularized rhythm. These diagnostic propertieso a larger increase in uncertainty than other current mash
both provide support for the hypothetical representationthe corresponding generator's bu er is emptied into the Global
and aord a useful facility in the wider theory proposed Workspace, which is in fact IDyOT's memory adormed with
below. bu ers along its leading edgé&igure 2). The previous bu er now
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FIGURE 1 | Overview of the IDyOT architecture. ~ Generators synchronized to perceptual input sample, givepreviously buffered perceptual input (if any), from a
rst-order, multidimensional Markov model to predict the net symbol in sequence, which is matched with the input. Predited symbols that match are buffered by
each generator until it is selected on grounds of its informt#on pro le. The selected generator then ushes its buffer ind the Global Workspace, which is the sum of
the structured hierarchical memory and a detector that seahes for salient information, shown as “conscious awarenes here. This allows the resulting chunk of
sequence to be stored in the memory, to become part of the stastical model and thence to be used subsequently.

forms a perceptual chunk, linked in sequence with the previouthe second geometrical, mostly continuous, and relatioigthér
chunk. The model entails that at least some generators mufdyer, providing semantics for the symbols of the rst.
be working in all perceptual modalities at all times, incluglin For symbol tethering$loman and Chappell, 20very low-
sensory ones; otherwise nothing would be predicting for nevevel conceptual spaces amepriori de ned by the nature of
input in a given modality to match against. The process otheir sensory input (inspired by human biology); higher-leve
structure generation is explained Figure 2 ones are inferred from the lower levels using the information

As in parsing by competitive chunking (e.gerruchet and the sequential model. The exact nature of the conceptual spaces
Vinter, 1998; Servan-Schreiber and Anderson, )9DyOT's involved is an interesting future research area. A meastire o
chunking process breaks percept sequences into statisticadliymilarity, borrowed from conceptual space theofyafdenfors,
coherent groups, which tend to correspond with structurally2000, allows structures to be grouped together in categories,
coherent sub-phrases, though not necessarily with traditio giving them semantics in terms of mutual interrelation atka
linguistic categories. Chunking is the basic process by hwhiclayer, and tethering to the level below, eventually bottogni
IDyOT manages its information, by analogy with humanout in actual percepts. Using this, a consolidation phase
perceptual chunking Gobet et al., 2001 Once a chunk has allows membership of categories to be optimized, by local
entered the Global Workspace, it is added to the memory anddjustment, in terms of the predictive accuracy of the overal
becomes available to the generators for prediction. Thieggas model. Theoretically, the layering of models and its assedia
a positive feedback loop in which the chunks inform the staiéd ~ abstraction into categories can proceed arbitrary far up the
model that in turn causes chunking, reinforcing the model. constructed hierarchy. For clarity here, we restrict ourrapée

Each chunk, having been recorded, is associated with ta the number of layers necessary to describe simple musical
symbol in the next-higher-level of the model, which in turn rhythms.
adds to the overall predictive model, and each higher level is In summary, IDyOT's memory consists of multiple structures,
subject to chunking. Each symbol corresponds with a point irof which those inFigure 3 are simpli ed examples, in parallel,
a conceptual space associated with its own layer, and each suEd together by observed co-occurrences of feature values
point corresponds with a region or subspace of the conceptuaxpressed in multidimensional perceptual input sequences. The
spaceGardenfors, 200mf the layer below, de ned by the lower- whole constitutes a Bayesian Network, stratied in layers
level symbols in the chunk. Thus, two representations grow imletermined by the chunking process, and constrained to predict
parallel: the rst symbolic and explicitly sequential, dnivey only to the subsequent symbol at each level and in each
data, providing evidence from which the second is derived, anmodality. Note, however, that the subsequent symbol may
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FIGURE 2 | An illustration of the process of IDyOT structure b uilding. (A) The input to IDyOT is a sequence of values, with three differefeatures (thought of as
viewpointsafter Conklin and Witten, 1999. In reality, the voice input would be an audio signal, but fdhe purposes of example, we start at the (abstract and
approximate) phoneme level. The sentence perceived here f§ohn loves Mary.”(B) The structure eventually developed by IDyOT, showing the tr@rchical model
created by information-theroetic chunking, and the indidual times associated with each chunk (as used ifrigure 4 ) and the higher-level symbol that labels itC)
Five steps in the construction of the memory structure showrn (B). A generator is associated with each level of each viewpoinand with each alternative reading of
the structure (though ambiguity is not shown here: se&Viggins and Forth, 2015 for details). Rather than move data around, new input, once atched perceptually, is
added directly to the memory, which serves as the substrate fthe Global Workspace. As each chunk is constructed, theresia peak of information content, which
constitutes attentional energy in the system. Thus, as lagg chunks are produced up the hierarchy, larger segments ofeixt (and of the meanings with which they are
associated) enter the Workspace; this accods with the “spdight” analogy of Wiggins (2012b)
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FIGURE 3 | An illustration of IDyOT learned representation o f meter, for simple duple time, and its application to an experien ced simple rock rhythm.
This structure is learned from exposure to meters of this fon, optimized by IDyOT's memory consolidation process. It is cmpared here with the conventional
music-theoretic j‘l meter: the notation is restricted to quaver (eighth-note)alues, to avoid giving the impression o& priori metrical structure. The score fragment
denotes an experienced rock rhythm. The learned model of met implies stronger or weaker anticipation over the relevanime periods, the whole being
parameterized by the current basic unit. The model of the cuent rhythm (also learned, in the short term) also adds prections. The rhythm shown here is a simple
rock beat, which is interesting because of the anticipatedtird beat in the measure, marked with? here. This is an example where an expectation of the backgrad

model is denied and the resulting feeling of the missing beas predicted.

represent something arbitrarily far in the perceptual future,IDyOT encounters is processed in context of this background
because higher-level, more abstract models predict in parallmodel. The gure illustrates how the temporal expectations of
with, and conditioned by, more concrete ones, and each lighethe di erent metrical levels t together to produce weaker and
level symbol will subtend more than one lower level symbolstronger temporal expectations at di erent stages in the meter
From this model, IDyOT's generators make predictions andrthe with the perceived e ect shown in th#letrical Structureand
outputs are selected on the basis of probabilistic matchirth wi Combined e ect strengthustrations.

input. The di erences between generator outputs is cause@eith  The IDyOT generators make predictions of what will be
by their predicting from di erent parts of the memory structure perceived next, expressed as distributions over the relevant
(e.g., at dierent levels in the hierarchy), or from stochest alphabet. Each generator also makes a prediction of when the

choices licensed by the distributions with which they work. relevant symbol will appear. Because more predictors from
L. . . di erent levels predict (what would musicologically be) stgpn

4.2. Rhythm and Timing Expectation in beats, the prediction at these points is correspondingly steon

IDyOT and, in terms of qualia, this a ords the experience of metrical,

Figure 3illustrates the pattern of structures that is learned as #ierarchical rhythm.

result of exposure to a broad range Hfrhythms. (The model Section 3.7.2 outlines how the conceptual space of meter and

will, of course, be much more complicated than this in generalthythm proposed byForth (2012)a ords generalization away
because other meters will be represented in the same nefworlttom the details of particular performances, to corresponding
The binary structure results because of a combination ofiopalls patterns of entrainment, and allows the analysis of varratio
practice, in which event occurrences on metrically strongspal in terms of its geometrical properties. Once such a space is
are more frequent than on weak ones, and because a balancestablished, new time intervals can be represented withamid

tree representation of the structures is more informatiooient thence abstraction away from time interval to tempo becomes a
as a representation than other kinds of representation. Tthes, straightforward projection operation on the space, rathemtlaa
properties of the data to which IDyOT is exposed conspire wittmatter of timing from the raw data alone, which would be di cul

its information-based criteria to provide a theoretical agnt  to handle without the prior knowledge encoded in the metrical
for the development of meter in humans. Any rhythm that model.
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Importantly, the mechanism is required for e ective lingitst 4.3. A hypothetical Mechanism Underlying
communication with multiple individuals, who may have Entrainment

variation in speed or in regularity in their own speech, and Whogntrainment in IDyOT is a direct consequence of attentional
will certainly vary in speech speed from one to another; and foblynamics. Following Nobre (2001) IDyOT embodies a
combining expectations driven by information at multiple &%,  myitifaceted view of attention, in which there is no “unijar
to allow accurate anticipation of lexical timing and sente®  homuncular attention system”Nobre, 2001,p. 1326). The
turn-end timing simultaneously. Exactly the same hierateh  ynderstanding of attention becomes distributed activation
process can apply in both modalities. neural assemblies, not a single function of the brain.

Thus, IDyOT aords a method by whiclsequencesf time The mechanism with which IDyOT makes predictions of time
periods may be derived from a base level of measured temporgl the novel contribution of this paper. We consider temporal
units, which allows the construction of the metrical spaaefr  pregictions to be generated by the same kind of statisticalessc
tabula rasa Exposure to sucient metrical data will cause that governs the prediction of other attributes, such as the
the construction of hierarchical representations of metée |ikelihood of particular musical pitches or phonemes of speech.
hierarchies summing the durations of their subtended seqas,  However, temporal predictions are integral to the behavior of
summarizing the rhythms in the data, as illustratedrigure 3. the cognitive system itself, in time. Temporal predictiong ar
The relationship between the basic unit, and the structurefypothesized as drivers or regulators, coordinating, bsbal
composed upon it by chunking, may be expressed by locatingjg yenced by, the generation of predictive distributions in
rhythm as a point in the conceptual space de ned in Section 3. %ther domains, which collectively constitutes the generatf
Because the perceptual tendency is to integrate all condurregypectationsThe interaction between generated expectations and
rhythmic input, even when it is not obviously coherent, into sensory input leads to the construction of representations in
a percept of one single rhythm (as in polyrhythms) the entirememory, which in turn conditions subsequent expectations.
rhythmic structure that is audible at any point in time may  \easuring time necessitates the ability to relate distinct
be represented as exactly one point—or, if it is su ciently moments across time, and a mechanism by which the distance
uncoordinated as not to be perceptible as a rhythm, then as ngetween such markers can be determined. Although the actual
point at all. Thus, the entire IDyOT Global Workspace resosatemechanism is the subject of much debate (for an overview see
with the resultant temporal beat of its input, or descendssssand Durstewitz, 20),4ve assume a neuronal representation
into confusion when multiple con icting rhythmic inputs are of the passing of time to be available in the brain. We assume a
present. functional means by which moments in time can be related with

The abstract, static representation a orded by the conceptuakespect to this underlying clock, and that the neural encoding
space, however, does not account for the on-going, dynamigrms the basis for the estimation of time intervals, whichyrbe
percept of rhythmic beat: rather, it provides the parameters tharelated to activation in brain areas such as the pre-supplemgnta
congure it. In IDyOT, the on-going experience is accountedmotor area and frontal operculunioull, 200J.
for, instead, by the predictive anticipation of the generator Hypothesizing an intervallic representation of time
that use the memory at any point in a perceptual sequencgnderlying the cognitive processing of temporal information
to generate expectations. Consider a regular, Western rogkay appear obvious. However, considering the question of
beat, as illustrated irFigure 3 as processed by an IDyOT why and how this may be the case illustrates and supports
with extensive exposure to this kind of relatively foursqiar our wider position regarding the importance of prediction
rhythm. and e ciency of representation in perception and cognition.

First, we discuss predictions at the metrical level. At thissnalogous to the derivation of intervallic representatioof
level, the predictions of the part of the model representingitch from absolute representations of pitch, an intervallic
the current rhythm are mostly in line with those of the more representation of time is more compact in terms of both alphabet
general metrical predictions, and therefore the expectatiae size and resulting statistical model than a monotonic tilime-
reinforce: evidence con rms the estimating of the basictuni Furthermore, intervallic representations are invariantden
and the predictions can be correspondingly more certain. Thisranslation, directly a ording comparison, forming the base
corresponds with a human feeling the beat strongly. Howevethe identi cation of higher-level structure. We conjectuthat
there is one place in this rhythm where a speci ¢ musical e ecthe same mechanisms of chunking and representation leayning
is noticeable, that does not accord with simple prediction: orpreviously described as the core mechanisms underlying the
the third beat of the rst measure, a strongly expected beaprocessing of symbol sequences within the IDyOT cognitive
is not present in the rhythm (marked witt? in Figure3). architecture are directly applicable to the modeling of time,
A ectively, this loud rest(London, 1993 lies in strong contrast and in turn, underlie the real-time temporal dynamics of the
to the second measure of the rhythm, where the expectatiogognitive system.
is fullled. This rhythm, therefore, creates its musical ete Multiple independent IDyOT generators continuously predict
by subverting the metrical expectation of the listener, andensory input, at each level of the metrical hierarchy induicg
IDyOT is able to predict this e ect: unexpected occurrenceshe chunking process. There must be a su cient number, making
draw attention, and thus the listener is kept interested ie th predictions at su cient frequency, to be useful to the orgamim
beat. any given situation, subject to the constraint of availablgritive
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resources. In the auditory domain, we take the lower bound oimagined, rather than being a response elicited by actuaidou
20 ms (the approximate minimum IOl at which listeners canand how the intrinsic experience of pulse can continue beyond
reliably discern the correct ordering of two successiveetsis an audio stimulus. IDyOT's mechanism also accounts for loud
Hirsh, 1959, to determine the highest frequency at which therests (se€igure 3) and other e ects such as the jolt experienced
architecture must run—but note that this could result from by listeners enculturated into simple Western rhythms when
generators running at this frequency, or from su ciently mg  presented with simple non-isochronous time signatures such
generators running more slowly, but coordinated to suppoisth as g. Perhaps most important, it explains how untrained
temporal resolution. children from middle Eastern cultures can clap easily along

IDyOT generators exhibit weakly coupled behavior, becaus® rhythms that advanced Western musicians sometimes nd
they infer their timings from the single hierarchical memyor challenging: because the rhythms are learned, and theddarn
however, no direct coupling mechanism is assumed betweenodel aords the entrainment, not some simple oscillatory
individual generators. Following the global workspace thiewe  mechanism.
hypothesize that coupling behavior emerges as the phenomenal Thus, entrainment in IDyOT is a more general concept: it
experience of meter via the role played in the architecture bgmerges epiphenomenally from hierarchical time predictiorrove
the global workspace itself, through which all communicatio sequential structures. The strength of predictions is deteed
between generators is mediated. by memorized hierarchical information, leading to the mplée

It is parsimonious to argue that temporal expectations, indi erent strengths of expectation required to explain the
whatever modality, are generated in accordance with géneraxperienced complexity of rhythm in both music and language,
predictive principles, which are sensitive to the statisticafrom simple pulse up to the extreme rhythmic complexity found
regularities, or invariances, of sensory input. The nitsoarces in Arabic, Indian and African musics, and the complexity of
of cognition act as a global constraint on temporal structurerhythm in language from everyday argot to the most carefully
which in the limit tend toward maximizing e ciency. Therefe, performed poetry or rap.
we argue that the same kind of predictive temporal dynamics

exists in both music and language, following the temporab METHODOLOGY: STUDYING

structure of intentional and communicative behavior. Intho
cases, time is used to optimize attention and maximizEVOLUTION THROUGH COMPUTATIONAL
communicative potential. In both cases the features of timledt  SIMULATION
condition temporal prediction, which in turn drive the predion
of these features in time. A perennial problem for evolutionary accounts of biological
Thus, conceptual space representations are learned becagé¥elopment is that of distinguishing them from Just-So $#®ri
they are e cient, and they are constrained by embodimentdan (Kipling, 1993, because they are untestable. Here, we propose
therefore take a common form across a species, but are variatst methodology in which computational models of cognitive
across culture. Thence, we hypothesize that the mechanispiocess a ord a means of testing hypotheses about evolutionary
under]ying entrainment is a process of mode”ng Observab|geve|0pment. While it is clear tha silicosimulation is not the
patterns, which may (in a natural organism) be associateti witSame as runningn vivo experiments over evolutionary time, it
the cause of the patterns, and thus given meaning. can help to supply evidence for argument, if it is done rigorously.
The speci ¢ mechanism proposed is an extension of the event- TO see this, one must understand that the computational
by-event prediction used in extant statistical models of masid ~model in question is not merely a predictor from data. That is,
language. As each event is detected, the next one is predictéids not an attempt to neutrally machine-learn structure iatd
the prediction being expressed as a distribution over the sfsb and classify on that basis, or to search for arbitrary catiehs.
of the dimension being predicted. In IDyOT, di erently, this Rather, it is in its own right an overarching theory about the
distribution changes with time, time being substantially nmo functional processf mind, which may be decomposed into
granular than the inter-event interval. It can be calcuthes several related aspects, one of which (timing) is the curtipit.
follows. Instead of merely determining the observed Ihatid of ~Di erent aspects of the theory are testable in di erent ways, and
each of the possible symbols in context, IDyOT treats eactepie®nly though a comprehensive programme of experimentation—
of evidence di erently, counting not only the symbols, busal rst concentrating on individual aspects in isolation, then
the expected time of occurrence. The result may be viewed as @mbination—can a full understanding of the wider theory be
overlay of distributions in time, one for each symbol, withet ~established. From the current perspective, then, IDyOT is a
overall distribution across the alphabet at any point caltada theory; the aspect under scrutiny is its timing mechanisng an
by looking up the value of each symbol at that point. This isthis drives our current hypothesis formation.
illustrated inFigure 4 it a ords one of the means of testing the ~ Given adequate evidence that the model is correct with respec
IDyOT model, laid out in the next section. to current biology, the evolutionary a ordance of the approach
To summarize: in IDyOT, the experience of pulse, de nedoecomes available. Once the model has been shown to be an
by Fitch (2013)as a primary cognitive construct, emerges agicceptable predictor of empirical observations of the bemavio
an epiphenomenon of our more general notion of entrainmentit claims to capture, its parameters may be changed so as to
it results from the superposition of multiple, regular strongsimulate the e ect of changes known to have occurred in the
expectations. Importantly, this theory explains how pulse can brelevant species over evolutionary time: e.g., size of @gan
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FIGURE 4 | The process of generating IDyOT dynamic distributi  ons over an imaginary alphabet of three symbols, , ,and . The left side of the gure
shows the time distribution for each symbol as generated fnm observed experience. These distributions may be notionil superposed, giving the bottom right
diagram—however, note that this is for the purposes of illusation only: it is not intended to represent a combined distbution of any kind. Instead, given the
superposition of temporal distributions, instantaneous nes may be generated, cutting “across” the temporal ones, te examples shown here being at D 1; 2; 3. The
resulting model is similar to a Markov renewal process:0ss, 1992), but extends the idea to hierarchical structure.

and/or nervous system, availability of food, or other insic or ~ 6.1. Metheds to Validate IDyOT As a Model
extrinsic factors. of Current Cognition

Tobe clear: we do not claim that this methodology can disect! There is a variety of empirical tests for music and language
simulate evolution in all its complexity, but we do claim tht \yhich may serve as validation of the IDyOT approach. For
can supply useful answers to carefully posed questions thatéhavexample, an IDyOT with greater hierarchical depth of procegsin
bearing on the evolution of the aspects of present-day orgais or more training examples, may be used to predict listeners with

that the model is shown to simulate. di ering degrees of expertise or development, respectively; one
hypothesis, for example, would be that there is a cuto in terms
6. TESTABLE HYPOTHESES of hierarchical memory depth beyond which language will be

dysfunctional. In music, an IDyOT exposed to a large corpus
The IDyOT model aords more than one opportunity for may process musical structure at a higher level than an IDyOT
exploration of human rhythmic behavior in language andexposed to a small corpus, in the same way that expert listeners
music, and its evolution. First, the model must predict humantend to perceive music in terms of more semiotic structurethis
behavior as currently observed, in both modalities. Begausase, IDyOT's behavior could be compared with existing results
IDyOT is multidimensional, it is also possible in principle on human behavior. In addition to modeling listeners with neo
to study the eects of combining music with language,orless musicaltraining, IDyOT may be used to model the musica
for example, in lyrics. Second, the model should be usegerception and expectations of listeners with di erent cultura
to generate behavioral predictions, from which surprisingbackgrounds. Further, IDyOT may be used to model subjective
examples can be extractedidning, 2009. These can then metricization, to test whether an encultured IDyOT exhibihe
be tested against human behavior, further developing theame subjective metricization behavior as similarly etaced
model and adding to knowledge of that behavior. Thirdly,humans.
and more important in context of the current paper, In contrast to speci cally modeling listeners with divergen
parametric constraints may be placed on the model to explorexpectations (a orded from di erent cultural backgrounds or
hypothetical evolutionary pressures and help understandegrees of musical expertise), IDyOT may be used to simulate
their e ects. (Of course, this is only a valid approach ifinteraction between “average” listeners, or those of a coaipe
the model is demonstrated to be a good model of currenhypothetical listening background. Exposing trained IDyOds t
humans.) conversational dialogue should a ord predictions of the tirgs
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associated with observed turn-taking and of human judgreentexample. Rather than predicting neural response to anomalies,
in end-of-turn prediction experiments. Similarly, it shoulte  one may also predict human cognition at the behavioral ldwel,
able to generate expressive timing for synthesized speeth theposing a trained IDyOT to garden-path sentences, as disduss
correlates with human a ective response to timing deviations  previously, or to semantically equivalent sentences whicl va

In similar vein, timing may be used to disambiguate languag@ hierarchical periodic temporal structure. In this latersea
incrementally, as follows. Consider the following disceurs one would test whether IDyOT produces temporal responses
fragments: comparable to humans (e.g., who make di erent end-of-sentéenc
predictions). And nally, rather than testing ambiguous or
unexpected sentence endings, one may also expose a trained
IDyOT to nonsense words, to see whether the model, like
humans, creates perceptual chunks, perceptually imposing more
regularity in time than exists in the signal.
In fragment 1, the onset of the nalk/ phoneme of “bank” In the music information retrieval literature (see www.igm
will appear somewhat earlier than the initiadd//of “catching” net), there is signi cant interest in so-called “beat tragk—
in fragment 2, and thus the predicted meaning of the twothe automated detection of beat in (mostly popular) music,
sentences may changed at this very low level, as in the vefigr the purpose of nding similar music for listeners. This
eagerly predictive Cohort Theornarslen-Wilson, 198¢and  not unsuccessful literature (e.gQixon, 2001, 2007; Davies
its descendents. IDyOT theory predicts this and models thend Plumbley, 20Q7aords a rich vein of models against
e ect of the change in time explicitly, as illustrated ligure 4 which to compare IDyOT's entrainment mechanism. Similarly,
Note, however, that, on balance, semantic implication isallgu psychologicalfovel and Essens, 19&md neuroscienti ¢ Patel
somewhat stronger in disambiguating, as discussed/lmgins  and lversen, 20)4&omparators exist.
and Forth (2015) . .

In the domain of music, IDyOT may be run as a ©-2. Predicting Behavior from IDyOT
participant in a tapping synchronization study, with the FollowingHoning (2009, once a model has been validated, the
hypothesis that human-human pairings are indistinguishabléeseamher should push the model toward the extremes of its
from human-computer or computer-computer pairings. This Parameters, to discover unexpected predictions about human
sort of experiment would not only con rm the accuracy of the behavior. This is a valuable step in testing and exploring del®
underlying mechanisms of IDyOT, but demonstrate the vayidi performance, because surprising predictions (1) may inform
of the model when scaled up to behavioral interaction. More!S about hitherto unknown (or not well understood) human
generally, we would hope that other known e ects such as th&0ognitive mechanisms, and (2) will further validate the rabid a
scaling of timing errors proportionally to duration magnited broader range of behavioral contexts, by pushing the bouedar
would be an emergent property of IDyOT's processing of senso§f What is known, not simply modeling expected behavior.
input, or that IDyOT can model how temporal predictions are
modulated by non-temporal factors such that surprise, attemt
high-level expectation from top-down knowledge.

1. There was a bank at the corner.
/DE: wAz @ baNk @t D@ kO:n@

2. There was a bang, catching my attention.
/DE: wAz @ baN "katSIN m2l @"tEnS@n

6.3. Correspondence with Neural Function
Our methodology is to model cognitive function abstracted
In addition to modeling production and synchronization, from_ it_s sub_strate. Howeverz it is usefl_JI to consider .COQB.itiV
as in a tapping study, IDyOT may be used to Simulatéoredlctlons in context of their hypothetical neurophyglolcxgj|c
human perceptualcharacteristics, such as the perception ofmplementan_on,even though they are separated fro_m It
similarity. Hypotheses could examine the formation of the The funcpon of IDyQT, howevgr apstract,_ental_lls memory
model's geometrical space and probabilistic scaling of dsiters representat?ons that Increase in size W_'th time. These
by testing whether the high level patterns captured by IDyOS arrepre§entat|ons, though ”9‘ Ilter.al recordings of sensory
re ective of schematic perception of rhythmic variations, afr ~ €XPerience, are very high-dimensional, because they connect
generalization and classi cation of linguistic informei. all aspects of all features of sensory input together, where
Another avenue of research with regard to language woul§orelated. Unless one admits mysticism or quantum theory
be to test anomalies in perception and/or in the signal itselfat the physical level of the brain (which we do not), this very
And because IDyOT theory proposes that attention is regulatedense interconnectedness entails the availability ohbraiume
by information contained within the signal, its predictions which is strongly supralinear with respect to time, because
can be experimentally validated with methods such as EE@very neural assembly-H¢bb, 1949 has to be connected to
(e.g., ERP Mismatched Negativity—MMN—analyses) or eyevery other relevant neural assembly, across modalitiaeen
tracking measurements, as these techniques capture thémeal senses, and so on. This, we claim, is a necessary requirement
dynamics of information processing. In one such experimentpf the established ability for veridical memory: we could not
IDyOT should be able to reliably detect a deviant item withinremember detail of a sonata or soliloquy unless it were so at
a repetitive sequence, and therefore should accurately giredisome level of abstraction (notes/chords and words, resgegji
MMN response in oddball paradigmsl@atanen et al., 20),for ~ Various antidotes to this e ect may be proposed. For example:
1This example is oversimpli ed from a phonologist's perspective, becthesaN the low level detail of the me,mory may be d|§carded in favor
in “bank” and “bang" would in reality change subtly to re ectwhatoming next, ~Of more abstract representations; or the layering of strresu
but it serves to make the point here. may be restricted to a given number of layers; or the conpesti
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between correlated sensory features may be limited; andhso anay pass their algorithmic idiosyncrasies on to their IDyOT

This a ords a rich plethora of detailed hypotheses that may behildren.

tested in relation to comparative brain size of extant species In particular, parameters such as depth of hierarchy and

with various cognitive capacities. This, in its own right, yna retention of detail in symbol creation can be varied, and

be expected to elucidate the quality of the model in respecheir e ect on the predictions of the system studied. The

to these capacities; subsequently, in careful comparisoh wimost interesting possibility here is modeling the evolutioh

similar extinct species, it may be possible to chart a pathinglat the neocortex: in the style dBown and Wiggins (2005)an

increase in brain size with the development of successivelgm evolutionary computation system may be set up that allows

advanced cognitive capacities. simulation of not only cognitive function, but also the befav
For example, it is known that dogs can perceive, remembegf populations. Thus, evolution may be simulated quite litigral

and associate meaning with words (that is, sequences ofsilicg albeit at a functional level, and the relationship between

phonemes). But there is no evidence that they can compod#ological a ordances and e ects studied in ways that are not

words into meaningful phrase interpretations; indeed, qiiite ~ accessible vivo.

contrary. Our model would produce this e ect when limited to

only a few layers of chunking above the audio: sequences @t SUMMARY

phonemes, such as “walkies” would be memorable, but longer

composed phrases and sentences would not. On the other hand, this paper, we have presented a novel model of timing in

our theory a ords much deeper construction when more layersa predictive cognitive architecture. We have described meso

are allowed\(Viggins and Forth, 20105 detail how the temporal predictions allow e cient processing
Given this evolutionary account, one can formulateof ambiguous and/or noisy perceptual signals, and we have

experiments based on IDyOT's ability to learn sequentiafelated the mechanisms to both linguistic and musical rhythm

structures (such as language or music) in which dependertinally, we have proposed methods by which the approach will

variables relate to cortex volume: for example, the depth dfe evaluated, which constitutes the future work of the IDyOT

layering can be limited, or the alphabets of the various kyerproject.

can be limited, or both. These restrictions would be expetbed

limit the ability of the system to learn, and thence to predict AUTHOR CONTRIBUTIONS

This approach, in particular, allows us to distinguish IDyOT
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