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Abstract

Statistical Learning (SL), the ability to extract probabilistic
information from the environment, is a subject of much debate.
It appears intuitive that such a profound mechanism of learning
should carry predictive power towards general cognitive
ability. Yet, previous attempts have struggled to link SL ability
to measures of general cognitive function, suffering from low
correlations and mediocre test-retest reliability. Here, we
deploy a new continuous auditory SL task that achieves high
test-retest reliability (~ » = .8) and shows that SL ability does
significantly correlate with general cognitive function (up to
=. 56). Results are discussed in light of i) the theoretical
implications of the high test-retest reliability of our novel SL
task, ii) SL ability as a marker of general cognitive function,
and iii) future methodological considerations.
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Introduction

Statistical learning (SL) is the ability to track probabilistic
dependencies in the environment and make predictions based
on such probabilities. The importance of SL has been shown
in language acquisition, where humans are able to leamn
segment boundaries between words based on the transitional
probabilities of speech sounds (Saffran, Aslin, & Newport,
1996)(see Saffran & Kirkham, 2018 for a review). SL is not
only involved in language acquisition but also plays a major
role in any probabilistic-based build-up of expectancies
regardless of the domain, such as music (Creel, Newport, &
Aslin, 2004; Moldwin, Schwartz, & Sussman, 2017) and

vision (Kirkham, Slemmer, & Johnson, 2002, see Erickson &
Thiessen, 2015 for a review). Considering that SL is a
profound mechanism of learning, it comes by no surprise that
much research has been investigated the use of SL paradigms
as a measurement of individual ability and cognitive
assessment (Kaufman et al.,, 2010; Siegelman, Bogaerts,
Christiansen, & Frost, 2017; Siegelman & Frost, 2015;
Unsworth & Engle, 2005).

Traditionally, most assessments of cognitive function are
based on a wide battery of tests, ranging from various
memory tasks to verbal fluency tests and visual decision-
making tasks. These tests tend to be combined into a
summary statistic that is then interpreted to reflect the
overarching cognitive capacity of an individual (e.g., BAC-
SF in Keefe et al., 2004; Lam et al., 2017). SL paradigms may
offer a possible unified alternative measure of general
cognitive capacity, because of their ability to capture an
essential mechanism of learning involved in perception as
well as behavior (Kaufman et al., 2010).

Previous research investigating a connection between SL
ability and general cognitive ability, however, has often
yielded inconclusive results, with only small correlations
detected (e.g., r between 0.019 and .19 in Feldman, Kerr, and
Streissguth, 1995). Kaufman et al. (2010) used a set of
probabilistic Serial Reaction Time tasks to investigate the
connection between implicit SL and general cognitive ability.
In this paradigm, a sequence of states instantiated by a
stimulus at four different locations on the screen was
presented. The probability of each state’s occurrence in the



sequence was controlled by an underlying transitional
probability matrix. By extracting the statistical regularities of
the underlying transitional probability matrix, participants
could build expectations that would facilitate their reaction
times. The authors deliberately chose a reaction time task to
measure learning on a trial-by-trial basis. This is an important
consideration because learning curves may provide valuable
information about individual cognitive capacities (Karuza et
al., 2013; Misyak, Christiansen, & Tomblin, 2010). Similar
to previous attempts, however, the implicit SL ability in this
study showed small correlations with general cognitive
ability (» = .16). A reason for this may lie in the implicit
nature of the deployed task.

It is important to note that the paradigm used by Kaufman
et al. (2010) was aiming to maximize incidental learning
without highlighting the probabilistic nature of the task. The
degree of implicit vs. explicit information participants are
provided with impacts SL performance (Seger, 1994). With
explicit instructions, participants are aware that there exists
an underlying probabilistic structure for them to learn,
whereas in an implicit task that insight must also has to be
extracted first. In general, it seems that explicit instructions
increase the predictive power of SL performance for general
cognitive ability (Unsworth & Engle, 2005). Here, we aim to
deploy an explicit SL paradigm that is still able to capture
continuous learning trajectories.

Further methodological insight comes from Siegelman,
Bogaerts, and Frost (2017) who analyzed existing SL
paradigms to identify their shortcomings for the purpose of
measuring individual SL ability. One of the key criticisms
was that many participants perform at chance level (21-47%),
so SL can often only be demonstrated at a group level. The
authors also observed that many SL paradigms deploy only a
small number of different items (mostly triplets with 4 to 8
different items) that are repeated multiple times (1 to 16
times). A result of this approach is that there is little to no
variability of difficulty between the items, resulting in little
information to precisely estimate individual SL ability.
Another concern is that most SL paradigms show low test-
retest reliability (» = .44 in Kaufman et al., 2010). Though
Siegelman, Bogaerts, and Frost (2017) did not aim to link SL
ability to general cognitive ability, these are important
considerations, as a precise measurement of SL ability is a
prerequisite to establish SL ability as a predictor of general
cognitive function.

Based on their criticism of existing paradigms, Siegelman,
Bogaerts, and Frost (2017) developed a new Visual SL
paradigm that provides a promising measure of individual SL
ability. However, in this new paradigm, the authors rely on
the traditional learning-test phase distinction. This separation
between learning and testing can influence participants’
responses, introducing noise into the outcome measure and
does not allow tracking of continuous learning. Here, we aim
to combine Siegelman et al’s (2017) criticism of commonly
used SL paradigms with Kaufman et al. (2010) continuous
measurement approach. To this end, in the present study, we

test a continuous paradigm with a unique stimulus in each
trial, only defined by its transitional probabilities.

Importantly, while Siegelman, Bogaerts, and Frost's (2017)
new paradigm is conducted in the visual domain, here we aim
to explore the relationship between general cognitive ability
and auditory SL. Given the link with language acquisition in
the early years of development (Saffran & Kirkham, 2018),
auditory stimuli have been widely used in SL paradigms. The
auditory domain is a promising target to measure SL ability
and link it to cognitive ability. This is because the auditory
domain specializes in processing stimuli that unfold in time
(Pérez-Gonzalez & Malmierca, 2014) and relies heavily on
extracting statistical information from the environment
(Agres, Abdallah, & Pearce, 2018). Indeed, the auditory
system is very proficient in extracting probabilistic
regularities (Agres, Abdallah, & Pearce, 2018; Barascud,
Pearce, Griffiths, Friston, & Chait, 2016) and appears to
outperform other modalities in terms of SL (Conway &
Christiansen, 2005). Furthermore, the plethora of emerging
neural correlates of auditory SL can provide a useful resource
in the future to understand the link between SL ability and
general cognitive function (Abla, Katahira, & Okanoya,
2008; Barascud et al., 2016; Moldwin et al., 2017).

Unfortunately, previous attempts to connect auditory SL to
general cognitive ability have been futile (Siegelman & Frost,
2015), yielding non-significant correlations between -.06 and
0.06. These findings provide preliminary support for the null
hypothesis of no significant connection between SL ability
and general cognitive ability. Yet, there is still much debate
about whether SL ability is domain dependent, or subject to
a shared underlying computation mechanism that may or may
not be related to general cognitive ability (Conway &
Christiansen, 2005; Conway & Pisoni, 2008; Frost,
Armstrong, Siegelman, & Christiansen, 2015; Siegelman &
Frost, 2015). For example, Frost, Siegelman, Narkiss, and
Afek (2013) demonstrated that a performance on a SL task
correlated with various language learning scores (up to » =
.57). Similar results have been reported by Ahissar, Lubin,
Putter-Katz, and Banai (2006), who found that dyslexia may
be related to difficulties with tracking and extracting
statistical regularities. As a result, it has been suggested that
there is a universal principle of SL that functions domain
agnostically (Frost et al., 2013).

Further research is required to explore this possible
relationship between SL ability and general cognitive
function. The present study is in an attempt to link SL ability
to cognition through a refined paradigm that draws from
recent methodological advances in the literature.
Demonstrating that SL ability holds predictive value for
traditional measurements of cognitive function would be a
first step towards a new practical measurement of cognitive
ability that may function domain agnostically and would not
require an entire cognitive test battery with a diverse set of
tasks to be measured effectively. Furthermore, such a finding
would support the suggestion that SL is a unified principle
that provides insight in fundamental cognitive processes
(Ahissar et al., 2006; Frost et al., 2013).



We aim here to explore i) test-retest reliability of a novel
SL paradigm, and ii) whether this paradigm may be used to
approximate cognitive ability as measured by a conventional,
well established tool. Importantly, we also hope to iii) gain
insight into statistical learning performance that will help in
refining and further developing the capacity of SL tasks to
capture general cognitive ability and deepen our
understanding of statistical learning at large. The analysis and
discussion below address each of these three aims in turn.

Methodology

Participants

The present investigation uses a subset of a large clinical
music BCI study that is part of a collaboration between
[intentionally left blank for blinded review). The present work
focuses on an SL task and cognitive assessment data. The
remaining data from the larger project will be reported
elsewhere. Participants in the clinical BCI study were
between 60 and 85 years old, English speaking, Geriatric
Depression Scale (GDS) score of 4 or below, fit to provide
informed consent, and able to travel to the study site
independently. Exclusion criteria were the presence of
hearing impairment, presence of any known neuropsychiatric
disorder (such as dementia, or epilepsy), or any
contraindications for MRI. Participation in the entire study
was reimbursed with S$100. A total of 30 participants
participated in the study, however, three participants were
removed from the sample due to incomplete datasets. The age
of the remaining 27 participants ranged from 62 to 81 (Mage
= 677, SDage = 51)

Procedure

Participants provided informed consent before completing
the questionnaires and assessments. Participants completed
the Brief Assessment of Cognition — Short Form (BAC-SF),
which consists of the Verbal Memory, Digit Sequencing and
Symbol Coding tasks, and takes approximately 15 minutes to
complete (Keefe et al., 2004; Lam et al., 2017). Data from
these three tasks were normed (Lam et al., 2014). Gender/age
adjusted z-scores were obtained via the PCA method, as
detailed in Lam et al. (2017). Cognitive assessment was
administered before the SL task. At the end of the clinical
trial the cognitive assessment (9 to 10 weeks later), as well as
the statistical learning task (8 to 9 weeks later)were
administered again. In the following section, the SL task is
described in detail.

A Novel Paradigm We developed and deployed a novel
statistical learning paradigm. Traditional SL paradigms
consist of an exposure and a testing phase. While such
paradigms allow assessment of SL ability at the end of the
experiment, they do not provide insight into the information
acquisition rate or the learning trajectory. Notably, however,
there can be large differences in the learning curves of
individuals that may provide valuable information about
individual cognitive capacity (Karuza et al., 2013; Misyak et

al., 2010). The current SL paradigm consists of a continuous
task, rather than being divided in an exposure and a testing
phase. Participants were presented with a continuous stream
of four distinguishable states (A, B, C, D). These states were
instantiated by tones (sine waves at ~165 Hz (E3), 220 Hz
(A3),~294 Hz (D4), ~392 Hz (G4), each 333ms in duration),
presented through Sennheiser HD 201 headphones. Each
sound was uniquely associated with one state. The stream of
tones could randomly stop between 3.6 to 5.3 secs (11 to 17
states), and the participant’s task was to indicate which state
they suspect will occur next. They responded by clicking one
of four buttons that were presented on the computer screen.
Each button was associated with one of the four states. After
their response, the stream continued. Unbeknownst to the
participants, the transitional probability matrix between the
four states was tightly controlled. As visualized in Figure 1,
the transitional probability matrix yields three different
pathways: A high probability pathway that reflects responses
that are concurrent with the most likely next state; a low
probability pathway that reflects participants’ responses with
one of the two less likely states; and a rule violation. Rule
violations reflect responses that indicate a repetition of a
state. Such repetitions are impossible within the given
transitional probability matrix. There is a plethora of possible
measurements that can be calculated based on participants’
responses to this paradigm. Here, we use two fundamental
summary statistics that capture overall performance whilst
simultaneously capturing aspects of the individual’s learning
trajectory.

Cumulative High Probability Choices (CHPC) responses
reflect the cumulative number of responses that lie on the
high probability pathway. In the beginning of the task, such
responses should occur with chance probability (25%);
however, as soon as the participant extracts information from
the transitional probability matrix, the rate in which these
responses occur should increase. At the end of the task,
CHPC provides a summary of overall performance and takes
learning rate into account.

Cumulative Rule Violations (CRV) reflect the number of
responses that indicate repetition, which are impossible in the
transitional probability matrix. In the beginning of the task,
rule violations should occur with chance probability (25%);
however, the rate in which rule violations occur should
rapidly decrease. Therefore, by the end of the task, CRV
should provide a summary of performance whilst also taking
learning rate into account.
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Figure 1: Schematic representation of the probability
pathways. Each state is most often (75%, green line)
followed by a specific other state. Repetition of the same
state is impossible 0%, red line). The remaining two other
states are equiprobable (12.5% black line)

All instructions were displayed on a computer monitor. To
ensure that participants understood the task, each participant
completed four short practice phases. The first phase
consisted of a short demonstration of the four possible states
in ascending and descending order. In the second phase,
participants had the opportunity to familiarize themselves
with the auditory states and the interface. Participants heard
the four different states, one at a time in random order, and
were asked to indicate the correct button that was associated
with the respective state. The phase was complete when the
participant achieved 6 out of the last 10 trials correct, or
completed a total of 20 trials. In the third phase, participants
were presented with four trials of deterministic (rather than
probabilistic) sequences. When each sequence stopped, the
participant was required to indicate the state that they
believed was most likely to come next. In this training phase,
the associated buttons flashed simultaneously as the sounds
were played. This effectively reduced task difficulty by
making the sequences multimodal. The fourth phase
consisted of two trials and was identical to the third phase,
except that the buttons did not flash, so the participant had to
rely solely on auditory information. Afterwards, participants
continued on to the main study, which consisted of one long
sequence drawn from the transition probability matrix shown
in Figure 1. Similar to practice phase four, the states were
purely instantiated auditorily. In total, the long stream was
interrupted 48 times (trials) to prompt the participant to
predict the next state using the visual interface.

Results

Similar to (Kaufman et al., 2010), we use correlations to
explore test-retest reliability, and the link between SL and
Cognitive ability. To investigate SL performance, we deploy
a simulation-based approach to identify chance as well as
ideal performance in this probabilistic paradigm.

i) Test-retest Reliability As seen in Table 1, the adjusted z-
composite scores of the BAC-SF cognitive assessment (r =
.90, 1(25)=10.515, p <.0001) as well both statistical learning
measurements -- CHPC (r = .84, #25)=7.70, p <.0001) and
CRV (r =.79, t(25) = 6.44, p < .0001) -- show strong and

— Low Probability Pathway (12.5%)

significant correlations between the first and second visit.
Bonferroni corrected (new o= 0.0166) paired sampled t-tests
of CHPC between the first (M = 14.85, SD =7.22) and second
(M =15.48, SD =17.65) visit revealed no significance changes
(1(26) = -0.77, p = 0.4477). There was also no significant
difference in CRV (#(26) = -0.06, p = 0.9541) between the
first (M = 8.52, SD =4.66) and second (M = 8.56, SD = 5.35)
visit. After Bonferroni correction, there were also no
significant differences (#(26) = -2.27, p = 0.0319) in the
adjusted z-composite scores of the BAC-SF cognitive
assessment between the first (M = 0.23, SD = 1.12) and
second (M = 0.45, SD = 1.15) visit. Taken together, the results
indicate high test-retest reliability for all three measurements.

Table 1: Correlations between age and gender adjusted z-
composite scores for the BAC-SF cognitive assessment
(Comp), and both measures of statistical learning (CHPC,
CRYV) across both visits (V1, V2)

CHPC CRV Comp CHPC CRV Comp
Al V1 V1 V2 V2 V2

V1:.CHPC 1

V1:CRV -.80 1

V1:.Comp .48 -40 1

V2:.CHPC .84 -80 .54 1

V2:CRV -.67 79  -35 -.70 1

V2:.Comp .52 -44 .90 .56 -44 1

ii) Statistical Learning and Cognitive Ability Across both
visits, the adjusted z-composite scores of the BAC-SF
cognitive assessment show moderate and significant
correlation with CHPC (r = 0.52, #52) = 4.44, p < 0.0001)
and CRV (r =-0.42, #(52) = -3.31, p = 0.0017); see Table 1
for the correlations across visits. A linear model predicting
adjusted z-composite scores of the BAC-SF cognitive
assessment using CHPC, CRV, Visit, and their interactions
as predictors revealed significant coefficients for CHPC (Es¢
=0.12, SD = 0.05, p = 0.0181), and a significant interaction
between CHPC x CRV (Est =-0.01, SD =0.01, p = 0.0389).
No other main effects or interactions reached significance (all
p > 0.1402). This suggests that CHPC and CRV share
considerable information, an observation supported by the
strong overall correlation for both visits between CHPC and
CRV (r=-0.74, t(52) = 7.96, p < 0.0001); see Table 1 for the
correlations across visits. In direct comparison, however,
CHPC is the better predictor of the adjusted z-composite
scores for the BAC-SF cognitive assessment compared with
CRV. Figure 2 shows a marginal effect plot for the significant
effect of CHPC on the composite score across both visits and
CRV at its average. The CRV however, shapes CHPC’s
prediction, as revealed by the significant and negative CHPC
x CRV interaction term. This is also visualized in the
marginal effect plots seen in Figure 2 that combine data from
both visits.
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Figure 2: Marginal effects of the CHPC x CRV
interaction on age and gender adjusted z-composite scores
of the BAC-SF cognitive assessment (Comp). The bands
show a 95% CI around the prediction line. The figure shows
that increasing CHPC predicts high cognitive ability when
participants make few rule violations (CRV red line). This,
however, is negated for participants who make many rule
violations (CRV blue line).

iii) Statistical Learning Performance. Because this is a
probabilistic rather than deterministic task, the question of
what constitutes chance, and what constitutes ideal
performance, is non-trivial and has to be carefully
considered. To model ideal and chance performance, we
simulated 10,000 observers providing random responses
(25% for each state) and constructed a 95% CI around the
resulting CHPC. This probability band is displayed towards
the bottom in Figure 3, and participants that fall inside of this
band are considered to be performing at chance level.
Furthermore, we simulated 10,000 ideal Bayesian observers
with a weak prior towards providing equiprobable responses.
The beta distribution is updated after every state during each
trial. The resulting beta distribution at the end of each trial
was used to draw an ideal observer response to determine
whether the observer produces responses that follow the high
probably pathway. The grey band towards the top of Figure
3 shows a 95% CI around the response distributions of the
ideal Bayesian observer. This band can be considered the best
achievable performance. We conducted the same simulation
for CRV responses.

Using the CHPC metric, 7 participants (out of 27) on the
first and 8 participants on the second visit successfully
learned the high probability pathway. In terms of rule
violations, 7 participants on the first, and 11 participants on
the second visit successfully learned to avoid repetitions.
Every participant that performed above chance on the first
visit also did so during the second. Furthermore, CHPC and
CRV are strongly negatively and significantly correlated
across both visits (» = -0.74, #(52) = -7.96, p < 0.0001); see
Table 1 for the breakdown of correlations across visits.

CHPC

Trial

Figure 3: CHPC performance for all 27 participants for
both visits. The dashed line represents chance performance
and the dotted line performance of an ideal Bayesian
observer. Grey bands represent 95% Cls.

Discussion

The present study investigated a possible link between SL
ability and general cognitive function. Indeed, using our new
SL paradigm, such a connection was observed. The results
above are discussed below in terms of fest-retest reliability,
SL and cognitive ability, as well as CHPC and CRV
Performance.

Test-retest Reliability The BAC-SF cognitive assessment
showed high test-retest reliability between the two sessions
(r = .90). This is a minimum prerequisite for any cognitive
assessment used within a clinical context, and lends
credibility to the measurement. In this particular case, the
high test-retest reliability is worth noting, as the BAC-SF
(Lam et al., 2014; Lam et al., 2017) is only a short form of
the BACS (Keefe et al, 2004). Previous research
investigating test-retest reliability of SL measurements has
only yielded moderate test-retest reliability (» = .44 to r= .58,
in Kaufman et al., 2010, and Siegelman & Frost, 2015). These
values are low compared to the typical test-retest reliability
in psychological cognitive assessments measurements (~ » =
.8 see Nunnally & Bernstein, 1994). Indeed, even Siegelman,
Bogaerts, and Frost's (2017) new improved visual SL task
falls slightly short of this target with a test-retest reliability of
.68. The measurements deployed here, achieve high test-
retest reliability (» =.79 to .84), and thereby approach the
range commonly observed in psychological assessments. The
This provides support for the view that SL is a stable
individual ability, which is necessary for a test to function as
a measurement of cognitive ability (see Siegelman & Frost,
2015 for a discussion).

Statistical Learning and Cognitive Ability Both
measurements of SL ability carry meaningful predictive
information for cognitive ability. High CHPC, which
indicates successful SL performance, has significant positive



correlations with general cognitive ability (» = .48 to .56).
Low CRYV, which also indicates successful SL performance,
also correlates significantly with general cognitive ability (»
= -.40 to -.44). These results show a substantially stronger
link between SL ability and general cognitive function than
those previously observed (»=0.019 to .16 in Kaufman et al.,
2010 and Feldman et al., 1995). Whilst not speaking to the
current debate on domain dependence vs. independence of
SL, or shared underlying cognitive mechanisms, the current
results suggest that SL ability may be associated in part with
general cognitive ability (Ahissar et al., 2006; Conway &
Christiansen, 2005; Conway & Pisoni, 2008; Frost et al.,
2015; Frost et al., 2013; Siegelman & Frost, 2015).

CHPC and CRYV Performance Despite the significant
correlations between both SL measurements and cognitive
function, the number of participants that exceeded the
conservative threshold of chance performance was limited (7
out of 27 during the first session). As a result, the present
study faces the same limitation as many other studies
investigating SL (see Siegelman, Bogaerts, & Frost, 2017 for
a review), namely, that many participants perform at chance
level. The number of participants who performed at chance
makes it difficult to develop statistical models to predict the
time course of SL, so this activity will be the subject of future
research. Siegelman, Bogaerts, and Frost (2017) suggested
that one way to avoid chance performance could be to
provide participants with a greater number of trials. The
current novel SL paradigm was limited to 10 minutes due to
time restrictions within the larger study. Most SL studies use
substantially more than the 48 trials used here (192 trials in
familiarization plus 42 test trials in Siegelman, Bogaerts, &
Frost, 2017, and 960 trials in Kaufman et al., 2010). The fact
that some participants were capable of successful SL
performance despite the small number of trials is
encouraging, and in the future, we hope to extend the current
paradigm by increasing the number of trials.

The relatively large number of participants who performed
at the conservatively chosen chance level also warrants
caution when interpreting the results. For example, the high
test-retest reliability observed may be influenced by the fact
that the same participants performed above chance in both
sessions, thereby potentially inflating the overall correlation
values. By modifying the paradigm in the future to allow all
participants to perform above chance, we hope to replicate
and reassess the test-retest coefficients obtained here. To this
end, a multi-modal version of the paradigm may also lead to
better results in the future. This is because multimodal
presentation may increase the reliability of individual
estimates of SL ability, and thereby its validity as a measure
of cognitive function, regardless of whether SL is subject to
domain dependent constraints or a domain agnostic
computational principle (Ahissar et al., 2006; Conway &
Christiansen, 2005; Frost et al., 2015; Frost et al., 2013;
Siegelman & Frost, 2015; Conway & Pisoni, 2008;
Siegelman, Bogaerts, Christiansen, et al., 2017).

Conclusion

The present study indicates that SL ability can be used to
predict general cognitive function as measured by a
traditional cognitive assessment battery. Furthermore, SL
ability shows high test-retest reliability that is comparable to
common psychological assessments. Taken together, the
present findings suggest that SL ability may be an underlying
computational principle crucial for general cognitive
function. The continuous paradigm requires further
refinement before it may be used as a reliable measure of
cognitive ability in clinical settings. Specifically, we hope to
explore multimodal presentation of the stimuli in the future.

References

Abla, D., Katahira, K., & Okanoya, K. (2008). On-line
assessment of statistical learning by event-related
potentials. J Cogn Neurosci, 20(6), 952-964.

Agres, K., Abdallah, S., & Pearce, M. (2018). Information-
Theoretic Properties of Auditory Sequences Dynamically
Influence Expectation and Memory. CognSci, 42(1), 43-76.

Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006).
Dyslexia and the failure to form a perceptual anchor.
Nature Neuroscience, 9(12), 1558.

Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., &
Chait, M. (2016). Brain responses in humans reveal ideal
observer-like sensitivity to complex acoustic patterns.
Proceedings of the National Academy of Sciences, E616-
E625. doi:10.1073/pnas. 1508523113

Conway, C. M., & Christiansen, M. H. (2005). Modality-
constrained statistical learning of tactile, visual, and
auditory sequences. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31(1), 24.

Conway, C. M., & Pisoni, D. B. (2008). Neurocognitive basis
of implicit learning of sequential structure and its relation
to language processing. Annals of the New York Academy
of Sciences, 1145(1), 113-131.

Creel, S. C., Newport, E. L., & Aslin, R. N. (2004). Distant
melodies: statistical learning of nonadjacent dependencies
in tone sequences. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 30(5), 1119.

Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning
of language: theory, validity, and predictions of a statistical
learning account of language acquisition. Developmental
Review, 37, 66-108.

Feldman, J., Kerr, B., & Streissguth, A. P. (1995).
Correlational analyses of procedural and declarative
learning performance. Intelligence, 20(1), 87-114.

Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen,
M. H. (2015). Domain generality vs. modality specificity:
The paradox of statistical learning Trends Cogn
Sci(Mar;19(3)), 117-125. doi:10.1016/j.tics.2014.12.010

Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013).
What predicts successful literacy acquisition in a second
language? Psychological Science, 24(7), 1243-1252.

Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J.,
Tivarus, M. E., & Bavelier, D. (2013). The neural correlates



of statistical learning in a word segmentation task: An fMRI
study. Brain and Language, 127(1), 46-54.

Kaufman, S. B., DeYoung, C. G., Gray, J. R, Jiménez, L.,
Brown, J., & Mackintosh, N. (2010). Implicit learning as an
ability. Cognition, 116(3), 321-340.

Keefe, R. S. E., Goldberg, T. E., Harvey, P. D., Gold, J. M.,
Poe, M. P., & Coughenour, L. (2004). The Brief
Assessment of Cognition in Schizophrenia: reliability,
sensitivity, and comparison with a standard neurocognitive
battery. Schizophrenia Research, 68(2-3), 283-297.

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002).
Visual statistical learning in infancy: Evidence for a domain
general learning mechanism. Cognition, §3(2), B35-B42.

Lam, M., Collinson, S. L., Eng, G. K., Rapisarda, A., Kraus,
M., Lee, J., . . . Keefe, R. S. E. (2014). Refining the latent
structure  of  neuropsychological performance in
schizophrenia. Psychol Med, 44(16), 3557-3570.

Lam, M., Wang, M., Huang, W., Eng, G. K., Rapisarda, A.,
Kraus, M., . . . Lee, J. (2017). Establishing the Brief
Assessment of Cognition-Short form. Journal of
Psychiatric Research, 93, 1-11.

Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010).
On-line individual differences in statistical learning predict
language processing. Frontiers in Psychology, 1, 31.

Moldwin, T., Schwartz, O., & Sussman, E. S. (2017).
Statistical Learning of Melodic Patterns Influences the
Brain's Response to Wrong Notes. J Cogn Neurosci,
29(12), 2114-2122.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric
Theory (McGraw-Hill Series in Psychology) (Vol. 3):
McGraw-Hill New York.

Pérez-Gonzélez, D., & Malmierca, M. S. (2014). Adaptation
in the auditory system: an overview. Frontiers in
integrative neuroscience, 8, 19.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996).
Statistical learning by 8-month-old infants. Science,
274(5294),1926-1928.doi:10.1126/Science.274.5294.1926

Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical
learning. Annual Review of Psychology, 69.

Seger, C. A. (1994). Implicit learning. Psychological
Bulletin, 115(2), 163.

Siegelman, N., Bogaerts, L., Christiansen, M. H., & Frost, R.
(2017). Towards a theory of individual differences in
statistical learning. Phil. Trans. R. Soc. B, 372(1711),
20160059.

Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring
individual differences in statistical learning: Current pitfalls
and possible solutions. Behavior Research Methods, 49(2),
418-432.

Siegelman, N., & Frost, R. (2015). Statistical learning as an
individual ability: Theoretical perspectives and empirical
evidence. Journal of Memory and Language, 81, 105-120.

Unsworth, N., & Engle, R. W. (2005). Individual differences
in working memory capacity and learning: Evidence from
the serial reaction time task. Memory & Cognition, 33(2),
213-220.



