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ABSTRACT

We propose a flexible framework that deals with both singer
conversion and singers vocal technique conversion. The
proposed model is trained on non-parallel corpora, accom-
modates many-to-many conversion, and leverages recent
advances of variational autoencoders. It employs separate en-
coders to learn disentangled latent representations of singer
identity and vocal technique separately, with a joint decoder
for reconstruction. Conversion is carried out by simple vector
arithmetic in the learned latent spaces. Both a quantitative
analysis as well as a visualization of the converted spec-
trograms show that our model is able to disentangle singer
identity and vocal technique and successfully perform con-
version of these attributes. To the best of our knowledge, this
is the first work to jointly tackle conversion of singer identity
and vocal technique based on a deep learning approach.

Index Terms— singing voice conversion, vocal tech-
nique, variational autoencoders, disentangled representations

1. INTRODUCTION

Singing voice conversion (SVC) comprehensively refers to
tasks that convert an attribute of singing. Converting from one
singer’s voice to that of another without affecting linguistic
content has been the focus in SVC [1, 2, 3, 4, 5]. Converting
between different vocal techniques, however, is a worthwhile
line of research that has lacked attention. Such an approach
would allow one to convert a singing voice into a different
timbre or pitch that was originally infeasible due to physical
constraints or lack of singing skills, thereby facilitating appli-
cations in entertainment and pedagogy.

Vocal techniques, such as ‘breathy’ and ‘vibrato’, enrich
the sound and are an integral part of singing. Singers per-
form different techniques at different points in time so as to
create emotional ebbs and flows. Modeling vocal techniques
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Fig. 1: The proposed framework, fully detailed in Section 3.2. The
blue, red and green blocks correspond to the singer encoder, vocal
technique encoder, and the joint decoder, respectively.

through data-driven models is challenging due to lack of la-
beled and balanced data, together with intrinsic ambiguity,
just to name a few.

We propose a framework that deals with the conversion
of both singer identity and vocal technique. We augment the
model based on the Deep Bi-directional Long Short-Term
Memory (DBLSTM) from [6] with latent variables, such
that it learns disentangled representations for both singer and
vocal technique through Gaussian mixture variational autoen-
coders (GMVAEs) [7, 8]. Unlike typical SVC models that
condition generation of singing voice on an utterance-level
singer label [9, 5, 4], our model is conditioned on time-
dependent singer/technique variables on a shorter temporal
scale, accommodating cases in which the vocal technique
varies across time. The proposed model can be trained on
non-parallel (i.e., unpaired) corpora, and allows for many-to-
many conversion of singer identities and vocal techniques.



We describe our modified implementation of the GMVAE
model [10, 11] along with our singer/vocal technique conver-
sion strategy in Section 2. Next, we elaborate on our experi-
mental setup using VocalSet [12], a dataset featuring signing
techniques, in Section 3. Finally, we report and discuss the
experimental results in Section 4.

2. METHOD

2.1. Variational Autoencoders

Our proposed singing voice generation process (z → X)
based on VAE includes the generation of a chunk of spectro-
gram X ∈ RT×F which is generated from a latent variable
z ∈ RD. This simple dependency structure allows us to ap-
ply variational inference, which optimizes the evidence lower
bound (ELBO) of p(X):

L(p, q;X) = Eq(z|X)[log p(X|z)]−DKL(q(z|X)||p(z)),
(1)

where we assume p(z) = N (0, I), p(X|z) = N (µx, I) and
q(z|X) = N (µz, diag(σz)), in which µz and σz are inferred
from X by an encoder, and µx is predicted by a decoder. Re-
constructing X from z which is inferred from X itself using
variational methods thus concludes a VAE.

2.2. Increasing Expressivity using a GMM Prior

The above made assumption p(z) = N (0, I) reflects the pref-
erence for a simple distribution of data, which in turn sac-
rifices model expressivity. Replacing p(z) with a Gaussian
mixture model (GMM), known as GMVAEs, has been proven
effective in increasing the expressivity and controllability [7,
8, 10, 11]. It has an additional layer of dependency: y → z
that enables us to utilize categorical attributes y that may be
available in data. The ELBO of a GMVAE then becomes:

L(p, q;X,y) = Eq(z|X)[log p(X|z)]−DKL(q(z|X)||p(z|y)),
(2)

where the prior p(z) is now multi-modal (GMM), more likely
to model data with higher diversity. In addition, introducing
y endows the model with direct controllability over attributes
and flexibility for generation, as will be elaborated next.

2.3. Controlling Singer Identities and Vocal Techniques

Using the proposed GMVAE, the generation process for
singing voice is as follows: given a singer ys and a vo-
cal technique yt (collectively referred to as attributes), the
model first infers latent representations (zs and zt) of each
of the attributes, and then combines these two to generate a
spectrogram of the singing voice. Mathematically, the joint
probability, given the attributes can be factorized as follows:

p(X, zs, zt|ys,yt) = p(X|zs, zt)p(zs|ys)p(zt|yt), (3)

where both the conditional distributions p(zs|ys) and p(zt|yt)
are assumed to be Gaussian with learnable means and diag-
onal covariances. This GMVAE model now takes into con-
sideration singer and vocal technique and thus can directly
control them during the conversion phase.

2.4. Learning an Attribute-discriminative Space

We incorporate two classifiers, one for vocal techniques and
the other for singers, to encourage the learned spaces zt and
zs to be discriminative. Each classifier learns to predict y∗
from the sequence of z∗ = {z∗1, z∗2, ..., z∗N}, where N is
the number of chunks of a recording and ∗ denotes singers or
vocal techniques. The classifier receives a sequence level rep-
resentation that can be summarized by a simplified attention
mechanism [13, 14]:

α∗n =
ef(z∗n)∑N

m=1 e
f(z∗m)

, c∗ =

N∑
n=1

α∗nz∗n, (4)

where f(·) is a learnable function and c∗ denotes the summa-
rization (and thus the representation) of the input sequence
X. α∗n is uniformly distributed without the attention mod-
ule. The auxiliary objective of maximizing p(y∗|X) will thus
be added to the overall objective.

2.5. Weighting KLDs

A singer might be unable to maintain the same level of ex-
pressiveness of a technique throughout a recording. Simi-
larly, voice timbre and pitch also vary across a recording even
though a singer is asked to perform the same vocal technique.
Based on these observations, we may benefit from weighting
the KLD terms of (2) with α∗n obtained from Section 2.4.
Consummating our training objective, we have

L(p, q;X,ys,yt) =Eq(zs|X)q(zt|X)

[
log p(X|zs, zt)

]
−

N∑
n=1

αtnDKL(q(ztn|X)||p(zt|yt))

−
N∑

n=1

αtsDKL(q(zsn|X)||p(zs|ys))

+β logp(ys|X) + γ log p(yt|X),

(5)

where β and γ are weights for the discriminative objectives.

2.6. Conversion Strategies

We accommodate the time-varying singing attributes in ex-
pressive singing voices by learning latent variables at a shorter
temporal scale. Consequently, we adopt the model to infer
the attributes, rather than assigning attributes directly dur-
ing the conversion phase.1 Generally, conversion is done by

1Empirically, we found training a model conditioned on an utterance-level
technique label did not work well, and we resorted to the proposed method.



adding a conversion vector dµ∗n to z∗n at the chunk level.
We define dµ∗n = µtarget

∗ − µsource
∗n , where µ∗ represents

the mean of a Gaussian mixture component. µsource
∗n can be

determined by either Gaussian likelihood p(y∗n|z∗n) or the
auxiliary sequence-level classifier p(y∗|X), referred to as C-
chunk and C-sequence, respectively. Note that the latter com-
putes a common µsource

∗n (and hence dµ∗n) over allN chunks.
We report the result from both methods below.

3. EXPERIMENTAL SETTINGS

3.1. Dataset

We use the VocalSet [12] to evaluate our framework. A sub-
set of audio files we selected has 20 singers, 6 vocal tech-
niques that were most distinguishable, (straight, breathy, vi-
brato, belt, lip trill and vocal fry), and 5 vowels. Each record-
ing was sung as either a scale or arpeggios. The subset was
divided into a training set of 1,065 recordings, and a testing
set of 118 (17 out of the 20 × 6 × 2 × 5 = 1200 combina-
tions are missing). The length of recordings ranges from 3.5
to 23 seconds. This subset approximates a balanced number
of instances over classes for singers, techniques, and vowels.

We re-sampled the recordings to 22,050 Hz, normalized
the waveform w.r.t. the largest magnitude, computed the log
magnitude Mel-spectrogram (MEL) with F = 96 filter banks,
and then rescaled it to [-1, 1]. We further segmented the MEL
into chunks of T = 43 frames (X ∈ R43×96). A frame shift
of 256 was used for computing the MELs, so that 43 frames
amount to 0.5 seconds.

3.2. Architecture

Our SVC framework encompasses seven components: a fea-
ture extraction network (FEN), two encoders, a decoder, a
post-processor, and two sequence-level classifiers. The over-
all architecture is shown Fig. 1

The FEN is composed of a two-layer one-dimensional
convolutional neural network (CNN), each with 512 filters
(3 × 1), followed by two fully-connected (FC) layers with
512 and 256 units respectively. Batch normalization followed
by ReLu is used for every layer. The FEN produces a 256-
dimension bottleneck feature for a given input MEL chunk,
and is shared and consumed by both encoders that follow.

Both of the encoders are parameterized as two-layer Re-
current Neural Networks (RNNs): a BLSTM with 256 hidden
units, followed by two FC layers shared across time which
predict µ∗ and logσ∗. z∗ is then sampled using the reparam-
eterization trick from [15]. The joint decoder has a similar
architecture as the encoders but in reverse order. At each time
step of the output sequence, a CNN with an architecture that
is symmetric to the FEN is employed to reconstruct the MEL
chunk. Finally, the refinement network, a three-layer one-
dimensional CNN with 512 filters (3×1), is used to refine the
reconstructed MELs.

3.3. Hyperparameters

The mean vectors of p(z∗|y∗) were all randomly initialized,
whereas the variance vectors were kept fixed with value e−2.
The number of mixtures for singers is set to 20, and set to 6 for
vocal techniques. Both are equal to the number of classes they
correspond to. We set the batch size to 128, and initialized the
model parameters with Xavier initialization [16]. The Adam
optimizer [17] was used with a learning rate of 10−4.

3.4. Evaluation Metrics

We evaluate our model by how well a classifier correctly rec-
ognizes the attributes in the converted MELs. The main idea
is that the converted MELs should be accurately classified as
the target class, and attributes that are not intended to be con-
verted should be predicted the same. The classification re-
sults thereby reveal the effects on the output MELs caused by
conversion. Each recording in the test set is first converted
to all possible target attributes and then evaluated by three
classifiers that recognize singer, singing technique, or vowel.
These classifiers have the same architecture as the combina-
tion of FEN, RNNs, and the attention module, and are trained
independently from unconverted MELs.

4. RESULTS

4.1. Recognizing Attributes from Converted MELs

We compare three variants of the proposed models: M1 de-
notes the model trained with neither the attention module nor
the the discriminative objectives (β = γ = 0). M2 is sim-
ilar to M1 but with β = γ = 1. Finally, M3 is the model
equipped with the attention module. The performance of M0
servers as the upper bound for classification results using un-
converted MELs as input. The results are listed in Table 1.
Higher numbers represent better performance for all cases.

We summarize our findings as follows: First, the attributes
in the MELs by M2 can be recognized with higher accuracy
than those from M1 in all cases; this supports our belief that
including discriminative objectives helps the model to disen-
tangle certain attributes from the input. Second, results from
M2 and M3 are similar, but M2 is better at singer conversion,
whereas M3 is slightly better at converting vocal techniques.
Third, there is no noticeable difference in performance be-
tween the two conversion strategies C-chunk and C-sequence.
Fourth, converting vocal techniques is much more challeng-
ing than converting singer identities as the accuracy drops
from 90.68% to below 67.94% after conversion, even though
the number of techniques is fewer.

4.2. Visualization

We visualise some examples of converted MELs in Fig. 2.
In the upper panel (a), it is clear that the overall pitch level



Strategy Model
Effect of Singer Conversion Effect of Technique Conversion

*Singer Technique Vowel Singer *Technique Vowel
Before After Before After Before After Before After Before After Before After

M0 89.83 NA 90.68 NA 77.97 NA 89.83 NA 90.68 NA 77.97 NA

C-chunk
M1 80.51 63.35 83.05 75.51 77.97 69.24 80.51 75.99 83.05 54.38 77.97 72.74
M2 87.29 76.95 83.90 76.99 72.03 66.78 87.29 81.92 83.90 65.82 72.03 71.33
M3 83.05 75.68 88.98 79.32 73.73 72.88 83.05 84.18 88.98 67.66 73.73 71.47

C-sequence
M2 87.29 76.65 83.90 76.64 72.03 66.69 87.29 82.06 83.90 65.64 72.03 71.33
M3 83.05 75.47 88.98 79.62 73.73 72.83 83.05 84.04 88.98 67.94 73.73 72.03

Table 1: The classification accuracy (%) derived by the three attribute classifiers, given different models. * denotes the converted attributes.

Fig. 2: Examples of singer conversion (a) and vocal technique conversion (b), converted by the model M3. The first column refers to source,
and the rest correspond to different targets. Targets that are the same as the sources are faded.

changes when doing cross-gender conversion. For technique
conversion (b), we can see that converting the lip trill to, e.g.,
straight, makes the spectrogram less flattened. On the other
hand, we can decorate a straight tone by converting it to a
bright and energized vocalization as can be seen in straight-
belt conversion, or to one with periodic frequency modulation
as shown in straight-vibrato conversion. Noticeable effects
are also observed when the targets are lip trill and vocal fry.

Despite the change of spectral distribution, the overall
pitch contours are retained in all source-target pairs. This
hints towards the model’s ability to perform many-to-many
singer identity and vocal technique conversion.

Conversion at chunk-level enables us to morph from
source to target by gradually increasing the conversion vector
from 0 to dµ∗n. As such, we can, e.g., convert a straight tone
to gradually express another technique over time. This has
not yet been seen in other existing SVC frameworks, and we
leave further investigation for future research.

5. RELATED WORK

Recent advances in deep learning have brought great success
to VC [18, 19, 20]; SVC, on the other hand, have not benefited
from it until recently. SINGAN [9], an SVC framework based
on deep generative models has been proposed to map acous-

tic features of a source singer to that of a target one; however,
the model is restricted to temporally-aligned singing record-
ings. In contrast, [5] proposed to combine automatic speech
recognition for SVC that is trainable from non-parallel cor-
pora. The model, however, only allows for converting a hand-
ful of source singers to a single target. Recently, an encoder-
decoder model is proposed which incorporates a domain con-
fusion network [21] to learn singer-agnostic features [4].

We distinguish ourselves by jointly modeling singer and
technique with a principled probabilistic generative model,
and conditioning the generation of singing voice on time-
dependent latent variables of the aforementioned attributes.
To the best of our knowledge, this is the first study on jointly
modeling/converting singer identity and vocal technique with
a single deep learning model.

6. CONCLUSION AND FUTURE WORK

We have proposed a flexible framework based on GMVAEs
to tackle non-parallel, many-to-many SVC for singer iden-
tity and vocal technique. Audio samples are available from
https://reurl.cc/oD5vjQ. Analyzing the temporal
dynamics of the latent variables, as well as accommodating
the dependency between singer identity and vocal technique
variables will be the focus of our future work.
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